-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
149 lines (114 loc) · 5.13 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import numpy as np
from PIL import Image
import torch
import torch.utils.data
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
from load_data import PennFudanDataset
import utils
from pathlib import Path
from itertools import groupby
from pycocotools.coco import COCO
from pycocotools import mask as maskutil
# from detectron2.utils.visualizer import ColorMode
import matplotlib.pyplot as plt
import json
import pycocotools._mask as _mask
class Predictor():
def __init__(self, model_name):
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
self.num_classes = 21
self.model = None
self.get_model_instance_segmentation(self.num_classes)
self.model_name = model_name
self.data_transforms = {
'train': transforms.Compose([
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
]),
'test': transforms.Compose([
transforms.ToTensor(),
]),
}
def get_model_instance_segmentation(self, num_classes):
# load an instance segmentation model
self.model = torchvision.models.detection.maskrcnn_resnet50_fpn(num_classes=num_classes, pretrained_backbone=True)
# get number of input features for the classifier
in_features = self.model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
self.model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# now get the number of input features for the mask classifier
in_features_mask = self.model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
# and replace the mask predictor with a new one
self.model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
hidden_layer,
num_classes)
# return model
def binary_mask_to_rle(self, binary_mask):
rle = {'counts': [], 'size': list(binary_mask.shape)}
counts = rle.get('counts')
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
if i == 0 and value == 1:
counts.append(0)
counts.append(len(list(elements)))
compressed_rle = maskutil.frPyObjects(rle, rle.get('size')[0], rle.get('size')[1])
compressed_rle['counts'] = str(compressed_rle['counts'], encoding='utf-8')
return compressed_rle
def encode(self, bimask):
rles = []
for instance_mask in bimask:
np_mask = np.array(instance_mask[:,:,None], order='F', dtype='uint8')
rle = maskutil.encode(np_mask)[0]
rle['counts'] = rle['counts'].decode('utf-8')
rles.append(rle)
return rles
def predict(self):
self.model.load_state_dict(torch.load(self.model_name))
self.model.to(self.device)
with torch.no_grad():
self.model.eval()
dataset = PennFudanDataset('dataset', train=False)
testloader = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=False, num_workers=4,
collate_fn=utils.collate_fn)
image_idxs = dataset.img_idxs
results = []
# results.append(image_names)
k = 0
for i in range(len(image_idxs)):
imgId = image_idxs[i]
print(imgId)
img_info = dataset.coco.loadImgs(ids=imgId)[0]
img_path = './dataset/test_images/'+img_info['file_name']
img = Image.open(img_path).convert("RGB")
# plt.imshow(img)
img = self.data_transforms['test'](img)
img = img.unsqueeze(0)
inputs = img.to(self.device)
outputs = self.model(inputs)[0]
for i_instance in range(len(outputs['scores'])):
pred = {}
pred['image_id'] = imgId
pred['category_id'] = int(outputs['labels'][i_instance]) #shouldn't plus one
binary_mask = outputs['masks'][i_instance].to("cpu").squeeze().numpy()
# convert float to binary
for bi in range(len(binary_mask)):
binary_mask[bi] = np.ndarray.round(binary_mask[bi])
pred['segmentation'] = self.binary_mask_to_rle(binary_mask)
# pred['segmentation'] = self.encode(binary_mask)[0]
pred['score'] = float(outputs['scores'][i_instance])
results.append(pred)
with open('results.json', "w") as f:
json.dump(results, f)
# print(results)
def main():
predictor = Predictor('./models/40.pt')
predictor.predict()
if __name__ == '__main__':
main()