-
Notifications
You must be signed in to change notification settings - Fork 0
/
policy10.py
291 lines (272 loc) · 14.7 KB
/
policy10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# -*- coding: utf-8 -*-
"""An implementation of the policyValueNet in PyTorch
Adapted from https://github.com/junxiaosong/AlphaZero_Gomoku
Modified by Chi-Hang Suen:
# Add slap to policy_value_fn
# add np.array() before convert to tensor to avoid being slow warning
Use torch.tanh instead as nn.functional.tanh is deprecated.
"""
# policy10: add use_slap usage: slap as supplement instead of replacement of data augmentation
# rename self.board_heoght to net_height for flexibility and readability
# policy9b: fix policy_value_fn: reshape act_probs before unslap!!!
# policy9a: use autoclip instead of absolute clip value
# policy9: import slap6 for cc_pos, stone_pos; clip gradients at (-1, 1);
# add option to normalize or not the probs before MCTS
# policy8: add self.in_channel, import slap4
# process crop & centre (cc) info in policy_value_fn
# policy7: config SGD changed to optim: add AdamW option;
# calculate validation loss by allowing train_mode False
# policy6b: fix bug on net for extra_act_fc
# policy6: add dropout option & extra_act_fc option (extra FC layer for action)
# policy5: add SGD optimizer option
# policy4: policy_value_fn: add evaluation mode, especially needed due to batchnorm,
# and with torch no grad which can also increase inference speed,
# noise applied after (instead of before) masking out illegal actions,
# remove noise count & sum
# policy3: output value_loss, policy_loss, refactoring noise code line
# policy2: let noise vary against leaf value, i.e. underdog plays more randomly
# add self.noise.count, self.noise.sum to pass to main program
# from policy_slap_noise_v7b, save computation by flatenning later;
# combine slap and non-slap, allow different networks & config Dirichlet, L2, slap opening
# v7b: remove upside down as current state is no longer stored upside down;
# make policy_value_fn output format consistent
# v5.6 allow config noise
# v5.4 fix rot90 axes & and flipud (use axis instead) & dirichlet in policy_value_net_fn;
# Fix log_softmax deprecation warning (use dim=-1, which gives same values as before)
# v5.1 fix bug in slap usage
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from slap6 import slap, unslap, cc_state, cc_pos, stone_pos
from autoclip.torch import QuantileClip
def set_learning_rate(optimizer, lr):
"""Sets the learning rate to the given value"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class Net(nn.Module):
"""policy-value network module"""
def __init__(self, board_width, net_height, dropout=0, extra_act_fc=0, in_channel=4):
super(Net, self).__init__()
self.board_width = board_width
self.net_height = net_height
self.dropout = nn.Dropout(dropout)
self.extra_act_fc = extra_act_fc
# common layers
self.conv1 = nn.Conv2d(in_channel, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
# action policy layers
self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4*board_width*net_height, board_width*net_height)
self.act_fc2 = nn.Linear(board_width*net_height, board_width*net_height)
# state value layers
self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2*board_width*net_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, state_input):
# common layers
x = F.relu(self.conv1(state_input))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
# action policy layers
x_act = F.relu(self.act_conv1(x))
x_act = self.dropout(x_act.view(-1, 4*self.board_width*self.net_height))
x_act = self.act_fc1(x_act)
if self.extra_act_fc:
x_act = self.act_fc2(self.dropout(F.relu(x_act)))
x_act = F.log_softmax(x_act, dim=-1)
# state value layers
x_val = F.relu(self.val_conv1(x))
x_val = self.dropout(x_val.view(-1, 2*self.board_width*self.net_height))
x_val = self.dropout(F.relu(self.val_fc1(x_val)))
x_val = torch.tanh(self.val_fc2(x_val))
return x_act, x_val
class ResidualBlock(nn.Module):
#Source: https://www.analyticsvidhya.com/blog/2021/08/all-you-need-to-know-about-skip-connections/
def __init__(self, in_channels, out_channels, stride=[1, 1], downsample=None):
""" A basic residual block of ResNet, allow downsampling of features.
in_channels: Number of channels that the input have
out_channels: Number of channels that the output have
stride: strides in convolutional layers
downsample: A callable to be applied before addition of residual mapping """
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride[0], padding=1, bias=False)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride[1], padding=1, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
# applying a downsample function before adding it to the output
if(self.downsample is not None):
residual = self.downsample(residual)
out = F.relu(self.bn(self.conv1(x)))
out = self.bn(self.conv2(out))
# note that adding residual before activation
out = out + residual
out = F.relu(out)
return out
class Res_Net(nn.Module):
"""policy-value network module"""
def __init__(self, board_width, net_height, num_ResBlock=3, dropout=0, extra_act_fc=0, in_channel=4):
super(Res_Net, self).__init__()
self.board_width = board_width
self.net_height = net_height
self.num_ResBlock = num_ResBlock
self.dropout = nn.Dropout(dropout)
self.extra_act_fc = extra_act_fc
# common layers
self.conv1 = nn.Conv2d(in_channel, 256, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(256)
self.ResBlock = ResidualBlock(256,256)
# action policy layers
self.act_conv1 = nn.Conv2d(256, 2, kernel_size=1)
self.act_bn = nn.BatchNorm2d(2)
self.act_fc1 = nn.Linear(2*board_width*net_height, board_width*net_height)
self.act_fc2 = nn.Linear(board_width*net_height, board_width*net_height)
# state value layers
self.val_conv1 = nn.Conv2d(256, 1, kernel_size=1)
self.val_bn = nn.BatchNorm2d(1)
self.val_fc1 = nn.Linear(board_width*net_height, 256)
self.val_fc2 = nn.Linear(256, 1)
def forward(self, state_input):
# common layers
x = F.relu(self.bn1(self.conv1(state_input)))
for i in range(self.num_ResBlock):
x = self.ResBlock(x) #default only use 3 ResBlock, while paper used either 19 or 39 blocks
# action policy layers
x_act = F.relu(self.act_bn(self.act_conv1(x)))
x_act = self.dropout(x_act.view(-1, 2*self.board_width*self.net_height))
x_act = self.act_fc1(x_act)
if self.extra_act_fc:
x_act = self.act_fc2(self.dropout(F.relu(x_act)))
x_act = F.log_softmax(x_act, dim=-1)
# state value layers
x_val = F.relu(self.val_bn(self.val_conv1(x)))
x_val = self.dropout(x_val.view(-1, self.board_width*self.net_height))
x_val = self.dropout(F.relu(self.val_fc1(x_val)))
x_val = torch.tanh(self.val_fc2(x_val))
return x_act, x_val
class PolicyValueNet():
"""policy-value network """
def __init__(self, board_width, net_height, model_file=None, use_slap=False, num_ResBlock=0,
L2=1e-4, opening=None, alpha=0.3, optimizer='Adam', dropout=0, extra_act_fc=0, in_channel=4, cc_fn=None, normalized=True, use_gpu=torch.cuda.is_available()):
self.use_gpu = use_gpu
self.device = torch.device('cuda' if self.use_gpu else 'cpu')
self.board_width = board_width
self.net_height = net_height
self.use_slap = use_slap
self.l2_const = L2 # coef of l2 penalty
self.opening = opening
self.alpha = alpha
self.in_channel = in_channel
self.cc_fn = cc_fn
self.normalized = normalized
# the policy value net module
if num_ResBlock > 0:
self.policy_value_net = Res_Net(board_width, net_height, num_ResBlock, dropout, extra_act_fc, in_channel).to(self.device)
else:
self.policy_value_net = Net(board_width, net_height, dropout, extra_act_fc, in_channel).to(self.device)
# set optimizer and initial model parameters (if any), lr will be set in train_step
if optimizer =='SGD':
self.optimizer = optim.SGD(self.policy_value_net.parameters(), lr=0, momentum=0.9, weight_decay=self.l2_const)
elif optimizer == 'Adam':
self.optimizer = optim.Adam(self.policy_value_net.parameters(), weight_decay=self.l2_const) #pytorch default weight decay 0
elif optimizer == 'AdamW':
self.optimizer = optim.AdamW(self.policy_value_net.parameters(), weight_decay=self.l2_const) #pytorch default weight decay 0.01
self.optimizer = QuantileClip.as_optimizer(optimizer=self.optimizer, quantile=0.9, history_length=1000)
if model_file:
net_params = torch.load(model_file)
self.policy_value_net.load_state_dict(net_params)
def policy_value(self, state_batch):
"""
input: a batch of states
output: a batch of action probabilities and state values
"""
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(np.array(state_batch)).cuda())
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.cpu().numpy())
return act_probs, value.data.cpu().numpy()
else:
state_batch = Variable(torch.FloatTensor(np.array(state_batch)))
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.numpy())
return act_probs, value.data.numpy()
def policy_value_fn(self, board, noise=0):
"""
input: board
output: a list of (action, probability) tuples for each available
action and the score of the board state
"""
#list of legal moves in integers 0, 1, 2...; slap opening only used for first move if given
legal_positions = board.availables if (not self.opening) or board.last_move > -1 else self.opening
current_state = np.ascontiguousarray(board.current_state().reshape(-1, 4, board.height, board.width))
if self.use_slap == 'add':
slap_state, temp_flip, temp_i = slap(current_state)
current_state = np.concatenate((current_state, np.zeros((1,4,1,board.width)), slap_state), axis=-2)
if self.use_slap == 'replace':
current_state, temp_flip, temp_i = slap(current_state)
if self.cc_fn: #i.e. crop & centre info is required; not used with 'add' of use_slap
current_state = np.expand_dims(np.concatenate((current_state[0], self.cc_fn(current_state[0]))), axis=0)
self.policy_value_net.eval() #evaluation mode needed for batchnorm
with torch.no_grad(): #faster for inference
log_act_probs, value = self.policy_value_net(Variable(torch.from_numpy(current_state.copy())).to(self.device).float())
self.policy_value_net.train()
# format output from network
value = value.to(torch.device('cpu')).data[0][0].numpy()
act_probs = np.exp(log_act_probs.data.to(torch.device('cpu')).numpy())
if self.use_slap == 'add':
act_probs = act_probs.reshape(self.net_height, self.board_width)
act_probs_slap = act_probs[board.height+1:self.net_height] #skip middle padding row
act_probs_extra = unslap(act_probs_slap, temp_flip, temp_i) #reverse slap
act_probs = act_probs[0:board.height] + act_probs[board.height+1:self.net_height] #sum instead of mean due to log_softmax
if self.use_slap == 'replace':
act_probs = unslap(act_probs.reshape(self.net_height, self.board_width), temp_flip, temp_i) #reshape & reverse slap for act_probs
# move representation format of board
act_probs = act_probs.flatten()
probs_legal = act_probs[legal_positions]
if self.normalized:
probs_legal /= probs_legal.sum()
if noise: #weight of randomness slides over (noise[0], noise[1]) against leaf value
if noise[0]>0:
weight = (noise[0] + noise[1] + (noise[0]-noise[1])*value)/2
probs_legal = (1-weight) * probs_legal + weight * np.random.dirichlet(self.alpha*np.ones(len(probs_legal)))
return zip(legal_positions, probs_legal), value
def train_step(self, state_batch, mcts_probs, winner_batch, lr, train_mode=True):
"""perform a training step"""
# wrap in Variable
state_batch = torch.tensor(np.array(state_batch), dtype=torch.float, requires_grad=train_mode).to(self.device)
mcts_probs = torch.tensor(np.array(mcts_probs), dtype=torch.float, requires_grad=train_mode).to(self.device)
winner_batch = torch.tensor(winner_batch, dtype=torch.float, requires_grad=train_mode).to(self.device)
if train_mode:
self.policy_value_net.train()
# zero the parameter gradients
self.optimizer.zero_grad()
# set learning rate
set_learning_rate(self.optimizer, lr)
else:
self.policy_value_net.eval()
# forward
log_act_probs, value = self.policy_value_net(state_batch)
# define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2
# Note: the L2 penalty is incorporated in optimizer
value_loss = F.mse_loss(value.view(-1), winner_batch)
policy_loss = -torch.mean(torch.sum(mcts_probs*log_act_probs, 1))
loss = value_loss + policy_loss
if train_mode:
# backward and optimize
loss.backward()
self.optimizer.step()
# calc policy entropy, for monitoring only
entropy = -torch.mean(torch.sum(torch.exp(log_act_probs)*log_act_probs, 1))
return loss.item(), entropy.item(), value_loss.item(), policy_loss.item()
def get_policy_param(self):
net_params = self.policy_value_net.state_dict()
return net_params
def save_model(self, model_file):
""" save model params to file """
net_params = self.get_policy_param() # get model params
torch.save(net_params, model_file)