Skip to content

Latest commit

 

History

History
47 lines (38 loc) · 1.56 KB

README.md

File metadata and controls

47 lines (38 loc) · 1.56 KB

Double Deep Q Learning (DDQN) In PyTorch

DDQN inplementation on PLE FlappyBird environment in PyTorch.

DDQN is proposed to solve the overestimation issue of Deep Q Learning (DQN). Apply separate target network to choose action, reducing the correlation of action selection and value evaluation.

Requirement

Algorithm

  • In this implementation, I update policy network per episode e not per step t.
  • Simplify input images for faster convergence.

Usage

  • HyperParameter in config.py
  • Train
python main.py --train=True --video_path=./video --logs_path=./logs 
  • Restore Pretrain Model
python main.py --restore=./pretrain/model-98500.pth  
  • Visualize loss and reward curve
python -m visdom.server
python visualize.py --logs_path=./logs

Result

Reference