A TensorFlow implementation using residual convolution autoencoder with/without discriminator for Face Completion
- Use CELEBA
- Generate noise at center (64x64) in utils.py
- Data path
-Face-Completion -autoencoder -data -train -test -autoencoder_gan -data -train -test
- Python == 2.7
- Tensorflow == 1.4
- Skimage
- Matplotlib == 2.0.0
-
Load pre-trained
Put checkpoint files under ./autoencoder/model folder and set restore=True -
Train and test
python main.py
--epoch
--batch_size
--data_path=./data
--model_path=./model
--output_path=./out
--graph_path=./graph
--restore=False
--mode=train/test
- Visualization
tensorboard --logdir=./graph
- Train and test
python main.py
--epoch
--batch_size
--data_path=./data
--model_path=./model
--output_path=./out
--graph_path=./graph
--restore=False
--mode=train/test
- Visualization
tensorboard --logdir=./graph