forked from ralph-irving/squeezelite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dsd.c
930 lines (802 loc) · 23.7 KB
/
dsd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/*
* Squeezelite - lightweight headless squeezebox emulator
*
* (c) Adrian Smith 2012-2015, triode1@btinternet.com
* Ralph Irving 2015-2023, ralph_irving@hotmail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
// dsd support
#include "squeezelite.h"
#if DSD
// use dsd2pcm from Sebastian Gesemann for conversion to pcm:
#include "./dsd2pcm/dsd2pcm.h"
extern log_level loglevel;
extern struct buffer *streambuf;
extern struct buffer *outputbuf;
extern struct streamstate stream;
extern struct outputstate output;
extern struct decodestate decode;
extern struct processstate process;
#define LOCK_S mutex_lock(streambuf->mutex)
#define UNLOCK_S mutex_unlock(streambuf->mutex)
#define LOCK_O mutex_lock(outputbuf->mutex)
#define UNLOCK_O mutex_unlock(outputbuf->mutex)
#if PROCESS
#define LOCK_O_direct if (decode.direct) mutex_lock(outputbuf->mutex)
#define UNLOCK_O_direct if (decode.direct) mutex_unlock(outputbuf->mutex)
#define LOCK_O_not_direct if (!decode.direct) mutex_lock(outputbuf->mutex)
#define UNLOCK_O_not_direct if (!decode.direct) mutex_unlock(outputbuf->mutex)
#define IF_DIRECT(x) if (decode.direct) { x }
#define IF_PROCESS(x) if (!decode.direct) { x }
#else
#define LOCK_O_direct mutex_lock(outputbuf->mutex)
#define UNLOCK_O_direct mutex_unlock(outputbuf->mutex)
#define LOCK_O_not_direct
#define UNLOCK_O_not_direct
#define IF_DIRECT(x) { x }
#define IF_PROCESS(x)
#endif
#define BLOCK 4096 // expected size of dsd block
#define BLOCK_FRAMES BLOCK * BYTES_PER_FRAME
#define WRAP_BUF_SIZE 32 // max 4 bytes per frame and 8 channels
typedef enum { UNKNOWN=0, DSF, DSDIFF } dsd_type;
static dsd_format outfmt = PCM; // local copy of output.dsdfmt to avoid holding output lock
struct dsd {
dsd_type type;
u32_t consume;
u32_t sample_rate;
u32_t channels;
u64_t sample_bytes;
u32_t block_size;
bool lsb_first;
dsd2pcm_ctx *dsd2pcm_ctx[2];
float *transfer[2];
};
static struct dsd *d;
static u64_t unpack64be(const u8_t *p) {
return
(u64_t)p[0] << 56 | (u64_t)p[1] << 48 | (u64_t)p[2] << 40 | (u64_t)p[3] << 32 |
(u64_t)p[4] << 24 | (u64_t)p[5] << 16 | (u64_t)p[6] << 8 | (u64_t)p[7];
}
static u64_t unpack64le(const u8_t *p) {
return
(u64_t)p[7] << 56 | (u64_t)p[6] << 48 | (u64_t)p[5] << 40 | (u64_t)p[4] << 32 |
(u64_t)p[3] << 24 | (u64_t)p[2] << 16 | (u64_t)p[1] << 8 | (u64_t)p[0];
}
static u32_t unpack32le(const u8_t *p) {
return
(u32_t)p[3] << 24 | (u32_t)p[2] << 16 | (u32_t)p[1] << 8 | (u32_t)p[0];
}
static int _read_header(void) {
unsigned bytes = min(_buf_used(streambuf), _buf_cont_read(streambuf));
s32_t consume;
if (!d->type && bytes >= 4) {
if (!memcmp(streambuf->readp, "FRM8", 4)) {
d->type = DSDIFF;
} else if (!memcmp(streambuf->readp, "DSD ", 4)) {
d->type = DSF;
} else {
LOG_WARN("bad type");
return -1;
}
}
while (bytes >= 16) {
char id[5];
u64_t len = d->type == DSDIFF ? unpack64be(streambuf->readp + 4) : unpack64le(streambuf->readp + 4);
memcpy(id, streambuf->readp, 4);
id[4] = '\0';
consume = 0;
if (d->type == DSDIFF) {
if (!strcmp(id, "FRM8")) {
if (!memcmp(streambuf->readp + 12, "DSD ", 4)) {
consume = 16; // read into
} else {
LOG_WARN("bad dsdiff FRM8");
return -1;
}
}
if (!strcmp(id, "PROP") && !memcmp(streambuf->readp + 12, "SND ", 4)) {
consume = 16; // read into
}
if (!strcmp(id, "FVER")) {
LOG_INFO("DSDIFF version: %u.%u.%u.%u", *(streambuf->readp + 12), *(streambuf->readp + 13),
*(streambuf->readp + 14), *(streambuf->readp + 15));
}
if (!strcmp(id, "FS ")) {
d->sample_rate = unpackN((void *)(streambuf->readp + 12));
LOG_INFO("sample rate: %u", d->sample_rate);
}
if (!strcmp(id, "CHNL")) {
d->channels = unpackn((void *)(streambuf->readp + 12));
LOG_INFO("channels: %u", d->channels);
}
if (!strcmp(id, "DSD ")) {
LOG_INFO("found dsd len: " FMT_u64, len);
d->sample_bytes = len;
_buf_inc_readp(streambuf, 12);
bytes -= 12;
return 1; // got to the audio
}
}
if (d->type == DSF) {
if (!strcmp(id, "fmt ")) {
if (bytes >= len && bytes >= 52) {
u32_t version = unpack32le((void *)(streambuf->readp + 12));
u32_t format = unpack32le((void *)(streambuf->readp + 16));
LOG_INFO("DSF version: %u format: %u", version, format);
if (format != 0) {
LOG_WARN("only support DSD raw format");
return -1;
}
d->channels = unpack32le((void *)(streambuf->readp + 24));
d->sample_rate = unpack32le((void *)(streambuf->readp + 28));
d->lsb_first = (unpack32le((void *)(streambuf->readp + 32)) == 1);
d->sample_bytes = unpack64le((void *)(streambuf->readp + 36)) / 8;
d->block_size = unpack32le((void *)(streambuf->readp + 44));
LOG_INFO("channels: %u", d->channels);
LOG_INFO("sample rate: %u", d->sample_rate);
LOG_INFO("lsb first: %u", d->lsb_first);
LOG_INFO("sample bytes: " FMT_u64, d->sample_bytes);
LOG_INFO("block size: %u", d->block_size);
} else {
consume = -1; // come back later
}
}
if (!strcmp(id, "data")) {
LOG_INFO("found dsd len: " FMT_u64, len);
_buf_inc_readp(streambuf, 12);
bytes -= 12;
return 1; // got to the audio
}
}
// default to consuming whole chunk
if (!consume) {
consume = (s32_t)((d->type == DSDIFF) ? len + 12 : len);
}
if (bytes >= consume) {
LOG_DEBUG("id: %s len: " FMT_u64 " consume: %d", id, len, consume);
_buf_inc_readp(streambuf, consume);
bytes -= consume;
} else if (consume > 0) {
LOG_DEBUG("id: %s len: " FMT_u64 " consume: %d - partial consume: %u", id, len, consume, bytes);
_buf_inc_readp(streambuf, bytes);
d->consume = consume - bytes;
break;
} else {
break;
}
}
return 0;
}
static decode_state _decode_dsf(void) {
// samples in streambuf are interleaved on block basis
// we transfer whole blocks for all channels in one call and so itterate the while loop below to handle wraps
unsigned bytes = _buf_used(streambuf);
unsigned block_left = d->block_size;
unsigned padding = 0;
unsigned bytes_per_frame;
switch (outfmt) {
case DSD_U32_LE:
case DSD_U32_BE:
bytes_per_frame = 4;
break;
case DSD_U16_LE:
case DSD_U16_BE:
case DOP:
case DOP_S24_LE:
case DOP_S24_3LE:
bytes_per_frame = 2;
break;
default:
bytes_per_frame = 1;
}
if (bytes < d->block_size * d->channels) {
LOG_INFO("stream too short"); // this can occur when scanning the track
return DECODE_COMPLETE;
}
IF_PROCESS(
process.in_frames = 0;
);
while (block_left) {
frames_t frames, out, count;
unsigned bytes_read;
u8_t *iptrl = (u8_t *)streambuf->readp;
u8_t *iptrr = (u8_t *)streambuf->readp + d->block_size;
u32_t *optr;
if (iptrr >= streambuf->wrap) {
iptrr -= streambuf->size;
}
// Remove zero padding from last block in case of inaccurate sample count
if ((_buf_used(streambuf) == d->block_size * d->channels)
&& (d->sample_bytes > _buf_used(streambuf))) {
int i;
u8_t *ipl, *ipr;
for (i = d->block_size - 1; i > 0; i--) {
ipl = iptrl + i;
if (ipl >= streambuf->wrap) ipl -= streambuf->size;
ipr = iptrr + i;
if (ipr >= streambuf->wrap) ipr -= streambuf->size;
if (*ipl || *ipr) break;
padding++;
}
block_left -= padding;
}
bytes = min(block_left, min(streambuf->wrap - iptrl, streambuf->wrap - iptrr));
IF_DIRECT(
out = min(_buf_space(outputbuf), _buf_cont_write(outputbuf)) / BYTES_PER_FRAME;
optr = (u32_t *)outputbuf->writep;
);
IF_PROCESS(
out = process.max_in_frames - process.in_frames;
optr = (u32_t *)(process.inbuf + process.in_frames * BYTES_PER_FRAME);
);
frames = min(bytes, d->sample_bytes) / bytes_per_frame;
if (frames == 0) {
if (d->sample_bytes && bytes >= (2 * d->sample_bytes)) {
// byte(s) left fill frame with silence byte(s) and play
int i;
for (i = d->sample_bytes; i < bytes_per_frame; i++)
*(iptrl + i) = *(iptrr + i) = 0x69;
frames = 1;
} else {
// should not get here due to wrapping m/2 for dsd should never result in 0 as header len is always even
LOG_INFO("frames got to zero");
return DECODE_COMPLETE;
}
}
frames = min(frames, out);
frames = min(frames, BLOCK);
bytes_read = frames * bytes_per_frame;
count = frames;
switch (outfmt) {
case DSD_U32_LE:
case DSD_U32_BE:
if (d->channels == 1) {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24 | dsd2pcm_bitreverse[*(iptrl+1)] << 16
| dsd2pcm_bitreverse[*(iptrl+2)] << 8 | dsd2pcm_bitreverse[*(iptrl+3)];
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24 | dsd2pcm_bitreverse[*(iptrl+1)] << 16
| dsd2pcm_bitreverse[*(iptrl+2)] << 8 | dsd2pcm_bitreverse[*(iptrl+3)];
iptrl += 4;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 24 | *(iptrl+1) << 16 | *(iptrl+2) << 8 | *(iptrl+3);
*(optr++) = *(iptrl) << 24 | *(iptrl+1) << 16 | *(iptrl+2) << 8 | *(iptrl+3);
iptrl += 4;
}
}
} else {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24 | dsd2pcm_bitreverse[*(iptrl+1)] << 16
| dsd2pcm_bitreverse[*(iptrl+2)] << 8 | dsd2pcm_bitreverse[*(iptrl+3)];
*(optr++) = dsd2pcm_bitreverse[*(iptrr)] << 24 | dsd2pcm_bitreverse[*(iptrr+1)] << 16
| dsd2pcm_bitreverse[*(iptrr+2)] << 8 | dsd2pcm_bitreverse[*(iptrr+3)];
iptrl += 4;
iptrr += 4;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 24 | *(iptrl+1) << 16 | *(iptrl+2) << 8 | *(iptrl+3);
*(optr++) = *(iptrr) << 24 | *(iptrr+1) << 16 | *(iptrr+2) << 8 | *(iptrr+3);
iptrl += 4;
iptrr += 4;
}
}
}
break;
case DSD_U16_LE:
case DSD_U16_BE:
if (d->channels == 1) {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24 | dsd2pcm_bitreverse[*(iptrl+1)] << 16;
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24 | dsd2pcm_bitreverse[*(iptrl+1)] << 16;
iptrl += 2;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 24 | *(iptrl+1) << 16;
*(optr++) = *(iptrl) << 24 | *(iptrl+1) << 16;
iptrl += 2;
}
}
} else {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24 | dsd2pcm_bitreverse[*(iptrl+1)] << 16;
*(optr++) = dsd2pcm_bitreverse[*(iptrr)] << 24 | dsd2pcm_bitreverse[*(iptrr+1)] << 16;
iptrl += 2;
iptrr += 2;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 24 | *(iptrl+1) << 16;
*(optr++) = *(iptrr) << 24 | *(iptrr+1) << 16;
iptrl += 2;
iptrr += 2;
}
}
}
break;
case DSD_U8:
if (d->channels == 1) {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24;
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24;
iptrl += 1;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 24;
*(optr++) = *(iptrl) << 24;
iptrl += 1;
}
}
} else {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 24;
*(optr++) = dsd2pcm_bitreverse[*(iptrr)] << 24;
iptrl += 1;
iptrr += 1;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 24;
*(optr++) = *(iptrr) << 24;
iptrl += 1;
iptrr += 1;
}
}
}
break;
case DOP:
case DOP_S24_LE:
case DOP_S24_3LE:
if (d->channels == 1) {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 16 | dsd2pcm_bitreverse[*(iptrl+1)] << 8;
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 16 | dsd2pcm_bitreverse[*(iptrl+1)] << 8;
iptrl += 2;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 16 | *(iptrl+1) << 8;
*(optr++) = *(iptrl) << 16 | *(iptrl+1) << 8;
iptrl += 2;
}
}
} else {
if (d->lsb_first) {
while (count--) {
*(optr++) = dsd2pcm_bitreverse[*(iptrl)] << 16 | dsd2pcm_bitreverse[*(iptrl+1)] << 8;
*(optr++) = dsd2pcm_bitreverse[*(iptrr)] << 16 | dsd2pcm_bitreverse[*(iptrr+1)] << 8;
iptrl += 2;
iptrr += 2;
}
} else {
while (count--) {
*(optr++) = *(iptrl) << 16 | *(iptrl+1) << 8;
*(optr++) = *(iptrr) << 16 | *(iptrr+1) << 8;
iptrl += 2;
iptrr += 2;
}
}
}
break;
case PCM:
if (d->channels == 1) {
float *iptrf = d->transfer[0];
dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptrl, 1, d->lsb_first, iptrf, 1);
while (count--) {
double scaled = *iptrf++ * 0x7fffffff;
if (scaled > 2147483647.0) scaled = 2147483647.0;
if (scaled < -2147483648.0) scaled = -2147483648.0;
*optr++ = (s32_t)scaled;
*optr++ = (s32_t)scaled;
}
} else {
float *iptrfl = d->transfer[0];
float *iptrfr = d->transfer[1];
dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptrl, 1, d->lsb_first, iptrfl, 1);
dsd2pcm_translate(d->dsd2pcm_ctx[1], frames, iptrr, 1, d->lsb_first, iptrfr, 1);
while (count--) {
double scaledl = *iptrfl++ * 0x7fffffff;
double scaledr = *iptrfr++ * 0x7fffffff;
if (scaledl > 2147483647.0) scaledl = 2147483647.0;
if (scaledl < -2147483648.0) scaledl = -2147483648.0;
if (scaledr > 2147483647.0) scaledr = 2147483647.0;
if (scaledr < -2147483648.0) scaledr = -2147483648.0;
*optr++ = (s32_t)scaledl;
*optr++ = (s32_t)scaledr;
}
}
break;
}
_buf_inc_readp(streambuf, bytes_read);
block_left -= bytes_read;
if (d->sample_bytes > bytes_read) {
d->sample_bytes -= bytes_read;
} else {
LOG_INFO("end of track samples");
block_left = 0;
d->sample_bytes = 0;
}
IF_DIRECT(
_buf_inc_writep(outputbuf, frames * BYTES_PER_FRAME);
);
IF_PROCESS(
process.in_frames += frames;
);
LOG_SDEBUG("write %u frames", frames);
}
if (padding) {
_buf_inc_readp(streambuf, padding);
LOG_INFO("Zero padding removed: %u bytes", padding);
}
// skip the other channel blocks
// the right channel has already been read and is guarenteed to be in streambuf so can be skipped immediately
if (d->channels > 1) {
_buf_inc_readp(streambuf, d->block_size);
}
if (d->channels > 2) {
d->consume = d->block_size * (d->channels - 2);
}
return DECODE_RUNNING;
}
static decode_state _decode_dsdiff(void) {
// samples in streambuf are interleaved on byte per channel
// we process as little as necessary per call and only need to handle frames wrapping round streambuf
unsigned bytes_per_frame, bytes_read;
frames_t out, frames, count;
u8_t *iptr;
u32_t *optr;
u8_t tmp[WRAP_BUF_SIZE];
unsigned bytes = min(_buf_used(streambuf), _buf_cont_read(streambuf));
IF_DIRECT(
out = min(_buf_space(outputbuf), _buf_cont_write(outputbuf)) / BYTES_PER_FRAME;
);
IF_PROCESS(
out = process.max_in_frames;
);
switch (outfmt) {
case DSD_U32_LE:
case DSD_U32_BE:
bytes_per_frame = d->channels * 4;
break;
case DSD_U16_LE:
case DSD_U16_BE:
case DOP:
case DOP_S24_LE:
case DOP_S24_3LE:
bytes_per_frame = d->channels * 2;
break;
default:
bytes_per_frame = d->channels;
out = min(out, BLOCK);
}
frames = min(min(bytes, d->sample_bytes) / bytes_per_frame, out);
bytes_read = frames * bytes_per_frame;
iptr = (u8_t *)streambuf->readp;
IF_DIRECT(
optr = (u32_t *)outputbuf->writep;
);
IF_PROCESS(
optr = (u32_t *)process.inbuf;
);
// handle wrap around end of streambuf and partial dsd frame at end of stream
if (!frames && bytes < bytes_per_frame) {
memset(tmp, 0x69, WRAP_BUF_SIZE); // 0x69 = dsd silence
memcpy(tmp, streambuf->readp, bytes);
if (_buf_used(streambuf) > bytes_per_frame) {
memcpy(tmp + bytes, streambuf->buf, bytes_per_frame - bytes);
bytes_read = bytes_per_frame;
} else {
bytes_read = bytes;
}
iptr = tmp;
frames = 1;
}
count = frames;
switch (outfmt) {
case DSD_U32_LE:
case DSD_U32_BE:
if (d->channels == 1) {
while (count--) {
*(optr++) = *(iptr) << 24 | *(iptr+1) << 16 | *(iptr+2) << 8 | *(iptr+3);
*(optr++) = *(iptr) << 24 | *(iptr+1) << 16 | *(iptr+2) << 8 | *(iptr+3);
iptr += bytes_per_frame;
}
} else {
while (count--) {
*(optr++) = *(iptr ) << 24 | *(iptr + d->channels) << 16
| *(iptr + 2 * d->channels) << 8 | *(iptr + 3 * d->channels);
*(optr++) = *(iptr+1) << 24 | *(iptr + d->channels + 1) << 16
| *(iptr + 2 * d->channels + 1) << 8 | *(iptr + 3 * d->channels + 1);
iptr += bytes_per_frame;
}
}
break;
case DSD_U16_LE:
case DSD_U16_BE:
if (d->channels == 1) {
while (count--) {
*(optr++) = *(iptr) << 24 | *(iptr+1) << 16;
*(optr++) = *(iptr) << 24 | *(iptr+1) << 16;
iptr += bytes_per_frame;
}
} else {
while (count--) {
*(optr++) = *(iptr ) << 24 | *(iptr + d->channels) << 16;
*(optr++) = *(iptr+1) << 24 | *(iptr + d->channels + 1) << 16;
iptr += bytes_per_frame;
}
}
break;
case DSD_U8:
if (d->channels == 1) {
while (count--) {
*(optr++) = *(iptr) << 24;
*(optr++) = *(iptr) << 24;
iptr += bytes_per_frame;
}
} else {
while (count--) {
*(optr++) = *(iptr ) << 24;
*(optr++) = *(iptr+1) << 24;
iptr += bytes_per_frame;
}
}
break;
case DOP:
case DOP_S24_LE:
case DOP_S24_3LE:
if (d->channels == 1) {
while (count--) {
*(optr++) = *(iptr) << 16 | *(iptr+1) << 8;
*(optr++) = *(iptr) << 16 | *(iptr+1) << 8;
iptr += bytes_per_frame;
}
} else {
while (count--) {
*(optr++) = *(iptr ) << 16 | *(iptr + d->channels) << 8;
*(optr++) = *(iptr+1) << 16 | *(iptr + d->channels + 1) << 8;
iptr += bytes_per_frame;
}
}
break;
case PCM:
if (d->channels == 1) {
float *iptrf = d->transfer[0];
dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptr, 1, 0, iptrf, 1);
while (count--) {
double scaled = *iptrf++ * 0x7fffffff;
if (scaled > 2147483647.0) scaled = 2147483647.0;
if (scaled < -2147483648.0) scaled = -2147483648.0;
*optr++ = (s32_t)scaled;
*optr++ = (s32_t)scaled;
}
} else {
float *iptrfl = d->transfer[0];
float *iptrfr = d->transfer[1];
dsd2pcm_translate(d->dsd2pcm_ctx[0], frames, iptr, d->channels, 0, iptrfl, 1);
dsd2pcm_translate(d->dsd2pcm_ctx[1], frames, iptr + 1, d->channels, 0, iptrfr, 1);
while (count--) {
double scaledl = *iptrfl++ * 0x7fffffff;
double scaledr = *iptrfr++ * 0x7fffffff;
if (scaledl > 2147483647.0) scaledl = 2147483647.0;
if (scaledl < -2147483648.0) scaledl = -2147483648.0;
if (scaledr > 2147483647.0) scaledr = 2147483647.0;
if (scaledr < -2147483648.0) scaledr = -2147483648.0;
*optr++ = (s32_t)scaledl;
*optr++ = (s32_t)scaledr;
}
}
break;
}
_buf_inc_readp(streambuf, bytes_read);
if (d->sample_bytes > bytes_read) {
d->sample_bytes -= bytes_read;
} else {
LOG_INFO("end of track samples");
d->sample_bytes = 0;
}
IF_DIRECT(
_buf_inc_writep(outputbuf, frames * BYTES_PER_FRAME);
);
IF_PROCESS(
process.in_frames = frames;
);
LOG_SDEBUG("write %u frames", frames);
return DECODE_RUNNING;
}
static decode_state dsd_decode(void) {
decode_state ret;
char *fmtstr;
fmtstr = "None";
LOCK_S;
if ((stream.state <= DISCONNECT && !_buf_used(streambuf)) || (!decode.new_stream && d->sample_bytes == 0)) {
UNLOCK_S;
return DECODE_COMPLETE;
}
if (d->consume) {
unsigned consume = min(d->consume, min(_buf_used(streambuf), _buf_cont_read(streambuf)));
LOG_DEBUG("consume: %u of %u", consume, d->consume);
_buf_inc_readp(streambuf, consume);
d->consume -= consume;
if (d->consume) {
UNLOCK_S;
return DECODE_RUNNING;
}
}
if (decode.new_stream) {
int r = _read_header();
if (r < 1) {
UNLOCK_S;
return DECODE_ERROR;
}
if (r == 0) {
UNLOCK_S;
return DECODE_RUNNING;
}
// otherwise got to start of audio
LOCK_O;
LOG_INFO("setting track_start");
output.track_start = outputbuf->writep;
outfmt = output.dsdfmt;
switch (outfmt) {
case DSD_U32_LE:
fmtstr = "DSD_U32_LE";
output.next_sample_rate = d->sample_rate / 32;
break;
case DSD_U32_BE:
fmtstr = "DSD_U32_BE";
output.next_sample_rate = d->sample_rate / 32;
break;
case DSD_U16_LE:
fmtstr = "DSD_U16_LE";
output.next_sample_rate = d->sample_rate / 16;
break;
case DSD_U16_BE:
fmtstr = "DSD_U16_BE";
output.next_sample_rate = d->sample_rate / 16;
break;
case DSD_U8:
fmtstr = "DSD_U8";
output.next_sample_rate = d->sample_rate / 8;
break;
case DOP:
fmtstr = "DOP";
output.next_sample_rate = d->sample_rate / 16;
break;
case DOP_S24_LE:
fmtstr = "DOP_S24_LE";
output.next_sample_rate = d->sample_rate / 16;
break;
case DOP_S24_3LE:
fmtstr = "DOP_S24_3LE";
output.next_sample_rate = d->sample_rate / 16;
break;
case PCM:
// PCM case after DSD rate check and possible fallback to PCM conversion
break;
}
if (outfmt != PCM && output.next_sample_rate > output.supported_rates[0]) {
LOG_INFO("DSD sample rate too high for device - converting to PCM");
outfmt = PCM;
}
if (outfmt == PCM) {
LOG_INFO("DSD to PCM output");
output.next_sample_rate = decode_newstream(d->sample_rate / 8, output.supported_rates);
if (output.fade_mode) _checkfade(true);
} else {
LOG_INFO("DSD%u stream, format: %s, rate: %uHz\n", d->sample_rate / 44100, fmtstr, output.next_sample_rate);
output.fade = FADE_INACTIVE;
}
output.next_fmt = outfmt;
decode.new_stream = false;
UNLOCK_O;
}
LOCK_O_direct;
switch (d->type) {
case DSF:
ret = _decode_dsf();
break;
case DSDIFF:
ret = _decode_dsdiff();
break;
default:
ret = DECODE_ERROR;
}
UNLOCK_O_direct;
UNLOCK_S;
return ret;
}
void dsd_init(dsd_format format, unsigned delay) {
LOCK_O;
output.dsdfmt = format;
output.dsd_delay = delay;
UNLOCK_O;
}
static void dsd_open(u8_t size, u8_t rate, u8_t chan, u8_t endianness) {
d->type = UNKNOWN;
if (!d->dsd2pcm_ctx[0]) {
d->dsd2pcm_ctx[0] = dsd2pcm_init();
d->dsd2pcm_ctx[1] = dsd2pcm_init();
} else {
dsd2pcm_reset(d->dsd2pcm_ctx[0]);
dsd2pcm_reset(d->dsd2pcm_ctx[1]);
}
if (!d->transfer[1]) {
d->transfer[0] = malloc(sizeof(float) * BLOCK);
d->transfer[1] = malloc(sizeof(float) * BLOCK);
}
}
static void dsd_close(void) {
if (d->dsd2pcm_ctx[0]) {
dsd2pcm_destroy(d->dsd2pcm_ctx[0]);
dsd2pcm_destroy(d->dsd2pcm_ctx[1]);
d->dsd2pcm_ctx[0] = NULL;
d->dsd2pcm_ctx[1] = NULL;
}
if (d->transfer[0]) {
free(d->transfer[0]);
free(d->transfer[1]);
d->transfer[0] = NULL;
d->transfer[1] = NULL;
}
}
struct codec *register_dsd(void) {
static struct codec ret = {
'd', // id
"dsf,dff", // types
BLOCK * 2, // min read
BLOCK_FRAMES,// min space
dsd_open, // open
dsd_close, // close
dsd_decode, // decode
};
d = malloc(sizeof(struct dsd));
if (!d) {
return NULL;
}
memset(d, 0, sizeof(struct dsd));
dsd2pcm_precalc();
LOG_INFO("using dsd to decode dsf,dff");
return &ret;
}
// invert polarity for frames in the output buffer
void dsd_invert(u32_t *ptr, frames_t frames) {
while (frames--) {
*ptr = ~(*ptr);
++ptr;
*ptr = ~(*ptr);
++ptr;
}
}
// fill silence buffer with 10101100 which represents dsd silence
void dsd_silence_frames(u32_t *ptr, frames_t frames) {
while (frames--) {
*ptr++ = 0x69696969;
*ptr++ = 0x69696969;
}
}
#endif // DSD