Tools for Bayesian forcefield development
#Prerequisites
- Install redis with
conda install redis
- Install celery with
pip install celery
- Get FreeSolv database (
git clone https://github.com/choderalab/FreeSolv.git
) - Using commit
3acd4f6a5f005b803fac024a3a87f64b51409e28
- set
FREESOLV_PATH
to location of database
#Preparing the database
- Run
code/rebuild_freesolv
- Initial simulations can be run before the sampling loop to speed up debugging
- This is enabled by default
code/prepare-database --types typefile --parameters parameterfile --output outputpickle
#Running GBFF (examples in scripts
)
- Start redis with the command
redis-server
- Set the environment variable
CELERY_CONFIG
to point tohydration_energies/config.yaml
- Edit
config.yaml
inhydration_energies
so that both fields point to the redis server - Start worker with the command
celery -A hydration_energies worker -l info -c 1 --app=hydration_energies.app:app
- the
c
option allows you to choose the number of processes/worker - Run
parameterize-using-database.py
#Output
- Defaults to hdf5 backend
- outputs in
/cbio/jclab/projects/pgrinaway/gbff/outputs.tar.gz
compressed 300_adaptive_3gbmodel_largejoint_days.h5
is the most recent dataset