forked from ecjoliver/eddyTracking
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheddy_detection.py
181 lines (139 loc) · 6.25 KB
/
eddy_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
'''
Software for the tracking of eddies in OFAM model output following Chelton et al., Progress in Oceanography, 2011.
This is the first of two main scripts, namely:
eddy_detection.py - detects the eddies
eddy_tracking.py - examines output from eddy_detection.py and finds eddy tracks.
This script is normally run without arguments, unless using ./eddytrackwrap.py (see file for details.)
Usage:
eddy_detection.py
eddy_detection.py --cli PCKLE_PATH [--mc MCORE]
eddy_detection.py -h
Options:
-h,--help : show this help message
--cli PCKLE_PATH : command line interface for eddytrackwrap.py, where PCKLE_PATH is a pickle containing the relevant details usually from experiments.py
--mc MCORE : str with 'corenumber'+'_'+'number-of-cores'
NB: Current way of reading NEMO files is very bad for IO. It is globbing (twice a timestep!) a lot and opening/closing the same file unecessarily. This could be improved a lot!
'''
# Load required modules
import numpy as np
import matplotlib
# Turn the followin on if you are running on storm sometimes - Forces matplotlib to not use any Xwindows backend.
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import eddy_functions as eddy
import pickle
# Load parameters
import params
import experiments as exps
getNEMOtime=False
#for eddytrackwrap.py START
def chunkIt(seq, num):
"http://stackoverflow.com/questions/2130016/splitting-a-list-of-arbitrary-size-into-only-roughly-n-equal-parts"
avg = len(seq) / float(num)
out = []
last = 0.0
while last < len(seq):
out.append(seq[int(last):int(last + avg)])
last += avg
return out
from docopt import docopt
arguments = docopt(__doc__)
if arguments['--cli']:
#load exps details from pickle...
cli_exp_dict = pickle.load( open( arguments['--cli'], "rb" ) )
exps.data_dir=cli_exp_dict['DATA_DIR']
exps.dt=cli_exp_dict['DT']
exps.pathroot=cli_exp_dict['PATHROOT']
exps.plot_dir=cli_exp_dict['PLOT_DIR']
exps.res=cli_exp_dict['RES']
exps.run=cli_exp_dict['RUN']
exps.T=cli_exp_dict['T']
# exps.T=3 #TEMP TEP
res_aviso = 0.25 # horizontal resolution of Aviso SSH fields [degrees]
area_correction = res_aviso**2 / exps.res**2 # correction for different resoluttions of AVISO and OFAM
exps.Npix_min = np.floor(8*area_correction) # min number of eddy pixels
exps.Npix_max = np.floor(1000*area_correction) # max number of eddy pixels
getNEMOtime=True
if arguments['--mc'] is not None:
print "Running Eddy detection in multi_core mode!"
corenum=arguments['--mc'].split('_')[0]
coretotal=arguments['--mc'].split('_')[1]
# print exps.data_dir+'eddy_det_'+exps.run+'_'+corenum.zfill(2)
fileloop=chunkIt(np.arange(exps.T),int(coretotal))[int(corenum)]
# print corenum, coretotal
#for eddytrackwrap.py END
# Load latitude and longitude vectors and restrict to domain of interest
lon, lat = eddy.load_lonlat(exps.run)
lon, lat, i1, i2, j1, j2 = eddy.restrict_lonlat(lon, lat, params.lon1, params.lon2, params.lat1, params.lat2)
# Loop over time
lon_eddies_a = []
lat_eddies_a = []
amp_eddies_a = []
area_eddies_a = []
scale_eddies_a = []
time_eddies_a = []
lon_eddies_c = []
lat_eddies_c = []
amp_eddies_c = []
area_eddies_c = []
scale_eddies_c = []
time_eddies_c = []
print 'eddy detection started'
if not arguments['--cli'] or arguments['--mc'] is None:
fileloop=np.arange(exps.T)
print "number of time steps to loop over: ",len(fileloop)
for idx,tt in enumerate(fileloop):
print "timestep: ",idx+1,". out of: ", len(fileloop)
# Load map of sea surface height (SSH)
eta, eta_miss = eddy.load_eta(exps.run, tt, i1, i2, j1, j2)
#retrieves time step
if getNEMOtime:
NEMOtime = eddy.load_eta(exps.run, tt, i1, i2, j1, j2,getNEMOtime=True)
eta = eddy.remove_missing(eta, missing=eta_miss, replacement=np.nan)
#eddy.quick_plot(eta,findrange=True)
#
## Spatially filter SSH field
#
eta_filt = eddy.spatial_filter(eta, lon, lat, exps.res, params.cut_lon, params.cut_lat)
#eddy.quick_plot(eta_filt,findrange=True)
#
## Detect lon and lat coordinates of eddies
#
lon_eddies, lat_eddies, amp, area, scale = eddy.detect_eddies(eta_filt, lon, lat, params.ssh_crits, exps.res, exps.Npix_min, exps.Npix_max, params.amp_thresh, params.d_thresh, cyc='anticyclonic')
lon_eddies_a.append(lon_eddies)
lat_eddies_a.append(lat_eddies)
amp_eddies_a.append(amp)
area_eddies_a.append(area)
scale_eddies_a.append(scale)
if getNEMOtime:
#append the correct number of times (we are just making copies)
NEMOtimes=\
np.array([NEMOtime for eddynumber in np.arange(len(scale_eddies_a[idx]))])
time_eddies_a.append(NEMOtimes)
lon_eddies, lat_eddies, amp, area, scale = eddy.detect_eddies(eta_filt, lon, lat, params.ssh_crits, exps.res, exps.Npix_min, exps.Npix_max, params.amp_thresh, params.d_thresh, cyc='cyclonic')
lon_eddies_c.append(lon_eddies)
lat_eddies_c.append(lat_eddies)
amp_eddies_c.append(amp)
area_eddies_c.append(area)
scale_eddies_c.append(scale)
if getNEMOtime:
#append the correct number of times (we are just making copies)
NEMOtimes=\
np.array([NEMOtime for eddynumber in np.arange(len(scale_eddies_c[idx]))])
time_eddies_c.append(NEMOtimes)
# Plot map of filtered SSH field
eddies_a=(lon_eddies_a[idx],lat_eddies_a[idx])
eddies_c=(lon_eddies_c[idx],lat_eddies_c[idx])
if not getNEMOtime:
eddy.detection_plot(tt,lon,lat,eta,eta_filt,eddies_a,eddies_c,'rawtoo',exps.plot_dir,findrange=False)
else:
eddy.detection_plot(tt,lon,lat,eta,eta_filt,eddies_a,\
eddies_c,'rawtoo',exps.plot_dir,findrange=False,\
ptitle=str(NEMOtime))
# Combine eddy information from all days into a list
eddies = eddy.eddies_list(lon_eddies_a, lat_eddies_a, amp_eddies_a, area_eddies_a, scale_eddies_a, lon_eddies_c, lat_eddies_c, amp_eddies_c, area_eddies_c, scale_eddies_c,time_eddies_a,time_eddies_c)
if not arguments['--cli']:
np.savez(exps.data_dir+'eddy_det_'+exps.run, eddies=eddies)
if arguments['--mc'] is not None:
np.savez(exps.data_dir+'eddy_det_'+exps.run+'_'+corenum.zfill(2), eddies=eddies)
print "finished eddy detection"