-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrecsAuxiliary.m
134 lines (117 loc) · 4.46 KB
/
recsAuxiliary.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
function [interp,xa,za] = recsAuxiliary(model,interp,s,x,z,xa,options)
% RECSAUXILIARY calculates auxiliary variables not included in the core model
%
% INTERP = RECSAUXILIARY(MODEL,INTERP,S,X,Z)
% For the definition of MODEL and INTERP structure, see recsSolveREE
% documentation. RECSAUXILIARY returns the interpolation structure INTERP, in
% which the coefficients matrices cxa (for auxiliary variables) and cza (for
% auxiliary expectations) have been added as new fields.
%
% INTERP = RECSAUXILIARY(MODEL,INTERP,S,X,Z,XA) uses XA as first guess for the
% value of the auxiliary variables on the grid. This is only useful when
% auxiliary variables are function of auxiliary expectations. In this case, it
% can reduce a lot the time to reach the solution to start from a good first
% guess.
%
% INTERP = RECSAUXILIARY(MODEL,INTERP,S,X,Z,XA,OPTIONS) solves for auxiliary
% variables with the parameters defined by the structure OPTIONS. The fields of
% the structure are
% eqsolver : 'fsolve', 'krylov' (default), 'lmmcp', 'ncpsolve',
% 'path' or 'sa'
% extrapolate : 1 or 2 if extrapolation is allowed outside the
% interpolation space, 0 or -1 to forbid it (default: 1).
% eqsolveroptions : options structure to be passed to eqsolver
%
% [INTERP,XA] = RECSAUXILIARY(MODEL,INTERP,S,X,Z,...) returns the value of the
% auxiliary variables on the grid.
%
% [INTERP,XA,ZA] = RECSAUXILIARY(MODEL,INTERP,S,X,Z,...) returns the value of
% the auxiliary expectations on the grid.
%
% See also RECSSIMUL, RECSSOLVEREE.
% Copyright (C) 2011-2016 Christophe Gouel
% Licensed under the Expat license, see LICENSE.txt
%% Initialization
defaultopt = struct( ...
'eqsolver' , 'krylov' ,...
'eqsolveroptions', struct('Diagnostics' , 'off' ,...
'DerivativeCheck', 'off' ,...
'Jacobian' , 'off') ,...
'extrapolate' , 1);
if nargin <=6
options = defaultopt;
else
if isfield(options,'eqsolveroptions')
options.eqsolveroptions = catstruct(defaultopt.eqsolveroptions,...
options.eqsolveroptions);
end
options = catstruct(defaultopt,options);
end
eqsolver = lower(options.eqsolver);
eqsolveroptions = options.eqsolveroptions;
b = model.functions.b;
e = model.shocks.e;
g = model.functions.g;
params = model.params;
w = model.shocks.w;
cx = interp.cx;
fspace = interp.fspace;
Phi = interp.Phi;
n = size(s,1);
k = size(e,1);
%% Phinext
ind = 1:n;
ind = ind(ones(1,k),:);
ss = s(ind,:);
xx = x(ind,:);
ee = e(repmat(1:k,1,n),:);
snext = g(ss,xx,ee,params,struct('F',1,'Js',0,'Jx',0));
if options.extrapolate>=1
snextinterp = snext;
else
snextinterp = max(min(snext,fspace.b(ones(n*k,1),:)),...
fspace.a(ones(n*k,1),:));
end
Phinext = funbas(fspace,snextinterp);
% Phinext = funbasx(fspace,snextinterp);
%% xnext
[LBnext,UBnext] = b(snext,params);
xnext = min(max(Phinext*cx,LBnext),UBnext);
% xnext = min(max(funeval(cx,fspace,Phinext),LBnext),UBnext);
%%
[ma,pa] = model.dima{:};
fa = model.functions.fa;
za = zeros(n,pa);
%%
if pa>0
%% With auxiliary expectations function
if nargin<=5 || isempty(xa), xa = fa(s,x,z,za,params); end
[xa,~,exitflag] = runeqsolver(@(X) ResidualVFI(X,false),xa(:),...
-inf(numel(xa),1),inf(numel(xa),1),...
eqsolver,eqsolveroptions);
xa = reshape(xa,n,ma);
if exitflag~=1
warning('RECS:FailureVFI','Failure to converge for auxiliary variables');
end
interp.cza = funfitxy(fspace,Phi,za);
else
%% Without auxiliary expectations function
xa = fa(s,x,z,za,params);
cxa = funfitxy(fspace,Phi,xa);
end
%%
interp.cxa = cxa;
%% Nested function
function R = ResidualVFI(xa_old,serial)
% RESIDUALVFI
if ~serial, xa_old = reshape(xa_old,n,ma); end
cxa = funfitxy(fspace,Phi,xa_old);
xanext = Phinext*cxa;
% xanext = funeval(cxa,fspace,Phinext);
ha = model.functions.ha(ss,xx,xa_old(ind,:),ee,snext,xnext,xanext,params);
za = reshape(w'*reshape(ha,k,n*pa),n,pa);
xa = fa(s,x,z,za,params);
R = xa-xa_old;
if ~serial, R = R(:); end
end
end