-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
532 lines (463 loc) · 19.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import time
import numpy as np
from tqdm.auto import tqdm
import tensorflow as tf
from tensorflow.keras import layers
import metrics
from absl import logging
class Conv_BN_Act(tf.keras.layers.Layer):
def __init__(self,
filters,
ks,
act_type,
is_bn=True,
padding='same',
strides=1,
conv_tran=False):
super(Conv_BN_Act, self).__init__()
if conv_tran:
self.conv = layers.Conv2DTranspose(filters,
ks,
strides=strides,
padding=padding,
use_bias=False)
else:
self.conv = layers.Conv2D(filters,
ks,
strides=strides,
padding=padding,
use_bias=False)
self.is_bn = is_bn
if is_bn:
self.bn = layers.BatchNormalization(epsilon=1e-05, momentum=0.9)
if act_type == 'LeakyReLU':
self.act = layers.LeakyReLU(alpha=0.2)
self.erase_act = False
elif act_type == 'ReLU':
self.act = layers.ReLU()
self.erase_act = False
elif act_type == 'Tanh':
self.act = layers.Activation(tf.tanh)
self.erase_act = False
elif act_type == '':
self.erase_act = True
else:
raise ValueError
def call(self, x):
x = self.conv(x)
x = self.bn(x) if self.is_bn else x
x = x if self.erase_act else self.act(x)
return x
class Encoder(tf.keras.layers.Layer):
""" DCGAN ENCODER NETWORK
"""
def __init__(self,
isize,
nz,
nc,
ndf,
n_extra_layers=0,
output_features=False):
"""
Params:
isize(int): input image size
nz(int): num of latent dims
nc(int): num of input dims
ndf(int): num of discriminator(Encoder) filters
"""
super(Encoder, self).__init__()
assert isize % 16 == 0, "isize has to be a multiple of 16"
self.in_block = Conv_BN_Act(filters=ndf,
ks=4,
act_type='LeakyReLU',
is_bn=False,
strides=2)
csize, cndf = isize / 2, ndf
self.extra_blocks = []
for t in range(n_extra_layers):
extra = Conv_BN_Act(filters=cndf, ks=3, act_type='LeakyReLU')
self.extra_blocks.append(extra)
self.body_blocks = []
while csize > 4:
in_feat = cndf
out_feat = cndf * 2
body = Conv_BN_Act(filters=out_feat,
ks=4,
act_type='LeakyReLU',
strides=2)
self.body_blocks.append(body)
cndf = cndf * 2
csize = csize / 2
# state size. K x 4 x 4
self.output_features = output_features
self.out_conv = layers.Conv2D(filters=nz,
kernel_size=4,
padding='valid')
def call(self, x):
x = self.in_block(x)
for block in self.extra_blocks:
x = block(x)
for block in self.body_blocks:
x = block(x)
last_features = x
out = self.out_conv(last_features)
if self.output_features:
return out, last_features
else:
return out
class DenseEncoder(tf.keras.layers.Layer):
def __init__(self, layer_dims, out_size=None, output_features=False, hidden_activation="selu", p_dropout=.2):
"""
Params:
layer_dims(Tuple[int]): dense layer dimensions
out_size(int): overwrite the output size of the last layer; use layer_dims[-1] if None
output_features(bool): use intermediate activation
hidden_activation(Union[str,tf.keras.layers.Activation]): activation of the hidden layers
p_dropout(float): dropout between the hidden layers
"""
super(DenseEncoder, self).__init__()
# Config
self.output_features = output_features
# Layers
self.in_block = tf.keras.layers.Dense(layer_dims[0], activation=hidden_activation)
self.body_blocks = []
self.body_blocks.append(tf.keras.layers.Dropout(p_dropout))
for cur_dim in layer_dims[1:-1]:
self.body_blocks.append(tf.keras.layers.Dense(cur_dim, activation=hidden_activation))
self.body_blocks.append(tf.keras.layers.Dropout(p_dropout))
# Override the output dimension if given
if out_size is not None:
self.out_act = tf.keras.layers.Dense(out_size)
else:
self.out_act = tf.keras.layers.Dense(layer_dims[-1])
def call(self, x):
x = self.in_block(x)
for block in self.body_blocks:
x = block(x)
last_features = x
out = self.out_act(last_features)
if self.output_features:
return out, last_features
else:
return out
class Decoder(tf.keras.layers.Layer):
def __init__(self, isize, nz, nc, ngf, n_extra_layers=0):
"""
Params:
isize(int): input image size
nz(int): num of latent dims
nc(int): num of input dims
ngf(int): num of Generator(Decoder) filters
"""
super(Decoder, self).__init__()
assert isize % 16 == 0, "isize has to be a multiple of 16"
cngf, tisize = ngf // 2, 4
while tisize != isize:
cngf = cngf * 2
tisize = tisize * 2
self.in_block = Conv_BN_Act(filters=cngf,
ks=4,
act_type='ReLU',
padding='valid',
conv_tran=True)
csize, _ = 4, cngf
self.body_blocks = []
while csize < isize // 2:
body = Conv_BN_Act(filters=cngf // 2,
ks=4,
act_type='ReLU',
strides=2,
conv_tran=True)
self.body_blocks.append(body)
cngf = cngf // 2
csize = csize * 2
# Extra layers
self.extra_blocks = []
for t in range(n_extra_layers):
extra = Conv_BN_Act(filters=cngf,
ks=3,
act_type='ReLU',
conv_tran=True)
self.extra_blocks.append(extra)
self.out_block = Conv_BN_Act(filters=nc,
ks=4,
act_type='Tanh',
strides=2,
is_bn=False,
conv_tran=True)
def call(self, x):
x = self.in_block(x)
for block in self.body_blocks:
x = block(x)
for block in self.extra_blocks:
x = block(x)
x = self.out_block(x)
return x
class DenseDecoder(tf.keras.layers.Layer):
def __init__(self, isize, layer_dims, hidden_activation="selu", p_dropout=.2):
"""
Params:
isize(int): input size
layer_dims(Tuple[int]): dense layer dimensions
hidden_activation(Union[str,tf.keras.layers.Activation]): activation of the hidden layers
p_dropout(float): dropout between the hidden layers
"""
super(DenseDecoder, self).__init__()
# Layers
self.in_block = tf.keras.layers.Dense(layer_dims[0], activation=hidden_activation)
self.body_blocks = []
self.body_blocks.append(tf.keras.layers.Dropout(p_dropout))
for cur_dim in layer_dims[1:]:
self.body_blocks.append(tf.keras.layers.Dense(cur_dim, activation=hidden_activation))
self.body_blocks.append(tf.keras.layers.Dropout(p_dropout))
self.out_block = tf.keras.layers.Dense(isize, activation="tanh")
def call(self, x):
x = self.in_block(x)
for block in self.body_blocks:
x = block(x)
x = self.out_block(x)
return x
class NetG(tf.keras.Model):
def __init__(self, opt):
super(NetG, self).__init__()
# Use the dense encoder-decoder pair when the dimensions are given
if opt.encdims:
self.encoder1 = DenseEncoder(opt.encdims)
self.decoder = DenseDecoder(opt.isize, tuple(reversed(opt.encdims[:-1])))
self.encoder2 = DenseEncoder(opt.encdims)
else:
self.encoder1 = Encoder(opt.isize, opt.nz, opt.nc, opt.ngf, opt.extralayers)
self.decoder = Decoder(opt.isize, opt.nz, opt.nc, opt.ngf, opt.extralayers)
self.encoder2 = Encoder(opt.isize, opt.nz, opt.nc, opt.ngf, opt.extralayers)
def call(self, x):
latent_i = self.encoder1(x)
gen_img = self.decoder(latent_i)
latent_o = self.encoder2(gen_img)
return latent_i, gen_img, latent_o
def num_params(self):
return sum(
[np.prod(var.shape.as_list()) for var in self.trainable_variables])
class NetD(tf.keras.Model):
""" DISCRIMINATOR NETWORK
"""
def __init__(self, opt):
super(NetD, self).__init__()
# Use the dense encoder when the dimensions are given
if opt.encdims:
self.encoder = DenseEncoder(opt.encdims, out_size=1, output_features=True)
else:
self.encoder = Encoder(opt.isize, 1, opt.nc, opt.ngf, opt.extralayers, output_features=True)
self.sigmoid = layers.Activation(tf.sigmoid)
def call(self, x):
output, last_features = self.encoder(x)
output = self.sigmoid(output)
return output, last_features
class GANRunner:
def __init__(self,
G,
D,
best_state_key,
best_state_policy,
train_dataset,
valid_dataset=None,
test_dataset=None,
save_path='ckpt/'):
self.G = G
self.D = D
self.train_dataset = train_dataset
self.valid_dataset = valid_dataset
self.test_dataset = test_dataset
self.num_ele_train = self._get_num_element(self.train_dataset)
self.best_state_key = best_state_key
self.best_state_policy = best_state_policy
self.best_state = 1e-9 if self.best_state_policy == max else 1e9
self.save_path = save_path
def train_step(self, x, y):
raise NotImplementedError
def validate_step(self, x, y):
raise NotImplementedError
def evaluate(self, x):
raise NotImplementedError
def _get_num_element(self, dataset):
num_elements = 0
for _ in dataset:
num_elements += 1
return num_elements
def fit(self, num_epoch, best_state_ths=None):
self.best_state = self.best_state_policy(
self.best_state,
best_state_ths) if best_state_ths is not None else self.best_state
for epoch in range(num_epoch):
start_time = time.time()
# train one epoch
G_losses = []
D_losses = []
with tqdm(total=self.num_ele_train, leave=False) as pbar:
for step, (x_batch_train,
y_batch_train) in enumerate(self.train_dataset):
loss = self.train_step(x_batch_train, y_batch_train)
G_losses.append(loss[0].numpy())
D_losses.append(loss[1].numpy())
pbar.update(1)
G_losses = np.array(G_losses).mean()
D_losses = np.array(D_losses).mean()
speed = step * len(x_batch_train) / (time.time() - start_time)
logging.info(
'epoch: {}, G_losses: {:.4f}, D_losses: {:.4f}, samples/sec: {:.4f}'
.format(epoch, G_losses, D_losses, speed))
# validate one epoch
if self.valid_dataset is not None:
G_losses = []
D_losses = []
for step, (x_batch_train,
y_batch_train) in enumerate(self.valid_dataset):
loss = self.validate_step(x_batch_train, y_batch_train)
G_losses.append(loss[0].numpy())
D_losses.append(loss[1].numpy())
G_losses = np.array(G_losses).mean()
D_losses = np.array(D_losses).mean()
logging.info(
'\t Validating: G_losses: {}, D_losses: {}'.format(
G_losses, D_losses))
# evaluate on test_dataset
if self.test_dataset is not None:
dict_ = self.evaluate(self.test_dataset)
log_str = '\t Testing:'
for k, v in dict_.items():
log_str = log_str + ' {}: {:.4f}'.format(k, v)
state_value = dict_[self.best_state_key]
self.best_state = self.best_state_policy(
self.best_state, state_value)
if self.best_state == state_value:
log_str = '*** ' + log_str + ' ***'
self.save_best()
logging.info(log_str)
def save(self, path):
self.G.save_weights(self.save_path + 'G')
self.D.save_weights(self.save_path + 'D')
def load(self, path):
self.G.load_weights(self.save_path + 'G')
self.D.load_weights(self.save_path + 'D')
def save_best(self):
self.save(self.save_path + 'best')
def load_best(self):
self.load(self.save_path + 'best')
class GANomaly(GANRunner):
def __init__(self,
opt,
train_dataset,
valid_dataset=None,
test_dataset=None):
self.opt = opt
self.G = NetG(self.opt)
self.D = NetD(self.opt)
super(GANomaly, self).__init__(self.G,
self.D,
best_state_key='roc_auc',
best_state_policy=max,
train_dataset=train_dataset,
valid_dataset=valid_dataset,
test_dataset=test_dataset)
self.D(tf.keras.Input(shape=[opt.isize] if opt.encdims else [opt.isize, opt.isize, opt.nc]))
self.D_init_w_path = '/tmp/D_init'
self.D.save_weights(self.D_init_w_path)
# label
self.real_label = tf.ones([
self.opt.batch_size,
], dtype=tf.float32)
self.fake_label = tf.zeros([
self.opt.batch_size,
], dtype=tf.float32)
# loss
l2_loss = tf.keras.losses.MeanSquaredError()
l1_loss = tf.keras.losses.MeanAbsoluteError()
bce_loss = tf.keras.losses.BinaryCrossentropy()
# optimizer
self.d_optimizer = tf.keras.optimizers.Adam(self.opt.lr,
beta_1=self.opt.beta1,
beta_2=0.999)
self.g_optimizer = tf.keras.optimizers.Adam(self.opt.lr,
beta_1=self.opt.beta1,
beta_2=0.999)
# adversarial loss (use feature matching)
self.l_adv = l2_loss
# contextual loss
self.l_con = l1_loss
# Encoder loss
self.l_enc = l2_loss
# discriminator loss
self.l_bce = bce_loss
def _evaluate(self, test_dataset):
an_scores = []
gt_labels = []
for step, (x_batch_train, y_batch_train) in enumerate(test_dataset):
latent_i, gen_img, latent_o = self.G(x_batch_train)
latent_i, gen_img, latent_o = latent_i.numpy(), gen_img.numpy(
), latent_o.numpy()
error = np.mean((latent_i - latent_o)**2, axis=-1)
an_scores.append(error)
gt_labels.append(y_batch_train)
an_scores = np.concatenate(an_scores, axis=0).reshape([-1])
gt_labels = np.concatenate(gt_labels, axis=0).reshape([-1])
return an_scores, gt_labels
def evaluate(self, test_dataset):
ret_dict = {}
an_scores, gt_labels = self._evaluate(test_dataset)
# normed to [0,1)
an_scores = (an_scores - np.amin(an_scores)) / (np.amax(an_scores) -
np.amin(an_scores))
# AUC
auc_dict = metrics.roc_auc(gt_labels, an_scores)
ret_dict.update(auc_dict)
# Average Precision
p_r_dict = metrics.pre_rec_curve(gt_labels, an_scores)
ret_dict.update(p_r_dict)
return ret_dict
def evaluate_best(self, test_dataset):
self.load_best()
an_scores, gt_labels = self._evaluate(test_dataset)
# AUC
_ = metrics.roc_auc(gt_labels, an_scores, show=True)
# Average Precision
_ = metrics.pre_rec_curve(gt_labels, an_scores, show=True)
@tf.function
def _train_step_autograph(self, x):
""" Autograph enabled by tf.function could speedup more than 6x than eager mode.
"""
self.input = x
with tf.GradientTape() as g_tape, tf.GradientTape() as d_tape:
self.latent_i, self.gen_img, self.latent_o = self.G(self.input)
self.pred_real, self.feat_real = self.D(self.input)
self.pred_fake, self.feat_fake = self.D(self.gen_img)
g_loss = self.g_loss()
d_loss = self.d_loss()
g_grads = g_tape.gradient(g_loss, self.G.trainable_weights)
d_grads = d_tape.gradient(d_loss, self.D.trainable_weights)
self.g_optimizer.apply_gradients(zip(g_grads,
self.G.trainable_weights))
self.d_optimizer.apply_gradients(zip(d_grads,
self.D.trainable_weights))
return g_loss, d_loss
def train_step(self, x, y):
g_loss, d_loss = self._train_step_autograph(x)
if d_loss < 1e-5:
st = time.time()
self.D.load_weights(self.D_init_w_path)
logging.info('re-init D, cost: {:.4f} secs'.format(time.time() -
st))
return g_loss, d_loss
def validate_step(self, x, y):
pass
def g_loss(self):
self.err_g_adv = self.l_adv(self.feat_real, self.feat_fake)
self.err_g_con = self.l_con(self.input, self.gen_img)
self.err_g_enc = self.l_enc(self.latent_i, self.latent_o)
g_loss = self.err_g_adv * self.opt.w_adv + \
self.err_g_con * self.opt.w_con + \
self.err_g_enc * self.opt.w_enc
return g_loss
def d_loss(self):
self.err_d_real = self.l_bce(self.pred_real, self.real_label)
self.err_d_fake = self.l_bce(self.pred_fake, self.fake_label)
d_loss = (self.err_d_real + self.err_d_fake) * 0.5
return d_loss