Current version on PyPI: 0.2.3
- GPR, VFE, SVGP: training inputs order is changed from (y, x) to (x, y) on model init()s.
.predict()
functions return the same type as the inputs provided (numpy.ndarray->numpy.ndarray, torch.Tensor->torch.Tensor)- Remove
util.as_variable()
- Remove
util.tensor_type()
- Remove
util.KL_Gaussian()
- Remove
util.gammaln()
- GPModel method
.loss()
generally replaces.compute_loss()
. .compute_loss()
methods in models generally renamed to.log_likelihood()
and signs flipped to reflect the fact that the loss is generally the negative LL.
- GPR, VFE: Allow specifying training set on .compute_loss() with x, y kwargs
- GPR, VFE: Allow specifying training inputs on ._predict() with x kwarg
- GPU supported with .cuda()
- Eliminate GPModel.evaluate()
- Don't print inducing inputs on sparse GP initialization
- Suport for priors in
gptorch.model.Model
s