-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathhss.c
169 lines (147 loc) · 5.85 KB
/
hss.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
* This is an implementation of the HSS signature scheme from LMS
* This is designed to be full-featured
*
* Currently, this file consists of functions that don't have a better home
*/
#include <stdlib.h>
#include <string.h>
#include "common_defs.h"
#include "hss.h"
#include "hash.h"
#include "endian.h"
#include "hss_internal.h"
#include "hss_aux.h"
#include "hss_derive.h"
#include "config.h"
#include "lm_ots_common.h"
/*
* Allocate and load an ephemeral key
*/
struct hss_working_key *hss_load_private_key(
bool (*read_private_key)(unsigned char *private_key,
size_t len_private_key, void *context),
void *context,
size_t memory_target,
const unsigned char *aux_data, size_t len_aux_data,
struct hss_extra_info *info ) {
/* Step 1: determine the parameter set */
unsigned levels;
param_set_t lm[ MAX_HSS_LEVELS ];
param_set_t ots[ MAX_HSS_LEVELS ];
if (!hss_get_parameter_set( &levels, lm, ots, read_private_key, context)) {
/* Can't read private key, or private key invalid */
return 0;
}
/* Step 2: allocate the ephemeral key */
struct hss_working_key *w = allocate_working_key(levels, lm, ots,
memory_target, info);
if (!w) {
/* Memory allocation failure, most likely (we've already vetted */
/* the parameter sets) */
return 0;
}
/* Step 3: load the ephemeral key */
if (! hss_generate_working_key( read_private_key, context,
aux_data, len_aux_data, w, info )) {
/* About the only thing I can see failing here is perhaps */
/* attempting to reread the private key failed the second time; */
/* seems unlikely, but not impossible */
hss_free_working_key( w );
return 0;
}
/* Success! */
return w;
}
/*
* Internal function to generate the root seed and I value (based on the
* private seed). We do this (rather than select seed, I at random) so that
* we don't need to store it in our private key; we can recompute them
*/
bool hss_generate_root_seed_I_value(unsigned char *seed, unsigned char *I,
const unsigned char *master_seed) {
#if SECRET_METHOD == 2
/* In ACVP mode, we use the master seed as the source for both the */
/* root seed, and the root I value */
memcpy( seed, master_seed, SEED_LEN );
memcpy( I, master_seed + SEED_LEN, I_LEN );
#else
/*
* We use a two-level hashing scheme so that we end up using the master
* seed only twice throughout the system (once here, once to generate the
* aux hmac key)
*/
unsigned char hash_preimage[ TOPSEED_LEN ];
unsigned char hash_postimage[ MAX_HASH ];
memset( hash_preimage + TOPSEED_I, 0, I_LEN );
memset( hash_preimage + TOPSEED_Q, 0, 4 );
SET_D( hash_preimage + TOPSEED_D, D_TOPSEED );
hash_preimage[TOPSEED_WHICH] = 0x00;
memcpy( hash_preimage + TOPSEED_SEED, master_seed, SEED_LEN );
/* We use a fixed SHA256 hash; we don't care about interoperability */
/* so we don't need to worry about what parameter set the */
/* user specified */
#if I_LEN > 32 || SEED_LEN != 32
#error This logic needs to be reworked
#endif
union hash_context ctx;
hss_hash_ctx(hash_postimage, HASH_SHA256, &ctx, hash_preimage,
TOPSEED_LEN );
memcpy( hash_preimage + TOPSEED_SEED, hash_postimage, SEED_LEN );
/* Now compute the top level seed */
hash_preimage[TOPSEED_WHICH] = 0x01;
hss_hash_ctx(seed, HASH_SHA256, &ctx, hash_preimage, TOPSEED_LEN );
/* Now compute the top level I value */
hash_preimage[TOPSEED_WHICH] = 0x02;
hss_hash_ctx(hash_postimage, HASH_SHA256, &ctx, hash_preimage,
TOPSEED_LEN );
memcpy( I, hash_postimage, I_LEN );
hss_zeroize( hash_preimage, sizeof hash_preimage ); /* There's keying */
/* data here */
hss_zeroize( &ctx, sizeof ctx );
#endif
return true;
}
/*
* Internal function to generate the child I value (based on the parent's
* I value). While this needs to be determanistic (so that we can create the
* same I values between reboots), there's no requirement for interoperability.
* So we use a fixed SHA256; when we support a hash function other than SHA256,
* we needn't update this.
*/
bool hss_generate_child_seed_I_value( unsigned char *seed, unsigned char *I,
const unsigned char *parent_seed,
const unsigned char *parent_I,
merkle_index_t index,
param_set_t lm, param_set_t ots) {
struct seed_derive derive;
if (!hss_seed_derive_init( &derive, lm, ots, parent_I, parent_seed )) {
return false;
}
hss_seed_derive_set_q( &derive, index );
/* Compute the child seed value */
hss_seed_derive_set_j( &derive, SEED_CHILD_SEED );
hss_seed_derive( seed, &derive, true );
/* True sets the j value to SEED_CHILD_I */
/* Compute the child I value; with increment_j set to true in the */
/* above call, derive has been set to the SEED_CHILD_I position */
unsigned char postimage[ SEED_LEN ];
hss_seed_derive( postimage, &derive, false );
memcpy( I, postimage, I_LEN );
hss_seed_derive_done( &derive );
return true;
}
void hss_init_extra_info( struct hss_extra_info *p ) {
if (p) memset( p, 0, sizeof *p );
}
void hss_extra_info_set_threads( struct hss_extra_info *p, int num_threads ) {
if (p) p->num_threads = num_threads;
}
bool hss_extra_info_test_last_signature( struct hss_extra_info *p ) {
if (!p) return false;
return p->last_signature;
}
enum hss_error_code hss_extra_info_test_error_code( struct hss_extra_info *p ) {
if (!p) return hss_error_got_null;
return p->error_code;
}