This project provides over 30 images for the following combinations:
- OS Versions:
jammy
,focal
- CUDA Versions:
12.4.1
,11.8.0
- Container Types:
base
,pytorch
,tensorflow=2.15.0
- Python Versions:
3.9
,3.10
,3.11
The resultant images are significantly smaller than the NVIDIA base images, with the smallest image being 399MB, which is 398% smaller than the NVIDIA base image. The images are built using Micromamba, a fast, reliable, and secure package manager for data science and machine learning.
Some of the highlights of the images are:
Name | Description | Image Size | Nvidia Image Size | Size Reduction |
---|---|---|---|---|
civo_jammy_python_3.11_cuda_12.4.1_base |
Python 3.11, CUDA 12.4, base image | 399.22MB | 1.99GB | -398.4% |
civo-python-cuda12-pytorch |
Base image with PyTorch, PyTorch-audio, etc. | 7.93GB | 8.68GB | -9.45% |
civo_jammy_python_3.11_cuda_12.4.1_pytorch |
Base image with PyTorch 2.3.0 | 1.99GB | 8.68GB | -336% |
civo_jammy_python_3.11_cuda_12.4.1_tensorflow |
Base image with TensorFlow 2.15.0 | 2.3GB | 6.62GB | -187.83% |
The following table lists the images and their compressed sizes:
Image Name | Size (in MB) |
---|---|
civo_jammy_python_3.10_cuda_12.4.1_pytorch | 709M |
civo_jammy_python_3.9_cuda_12.4.1_pytorch | 704M |
civo_jammy_python_3.11_cuda_12.4.1_pytorch | 737M |
civo_jammy_python_3.9_cuda_12.4.1_tensorflow | 650M |
civo_focal_python_3.10_cuda_11.8.0_tensorflow | 661M |
civo_jammy_python_3.10_cuda_12.4.1_base | 170M |
civo_focal_python_3.9_cuda_11.8.0_pytorch | 704M |
civo_focal_python_3.11_cuda_11.8.0_pytorch | 737M |
civo_jammy_python_3.10_cuda_11.8.0_pytorch | 708M |
civo_jammy_python_3.9_cuda_11.8.0_pytorch | 706M |
civo_jammy_python_3.11_cuda_12.4.1_base | 186M |
civo_jammy_python_3.11_cuda_11.8.0_pytorch | 735M |
civo_jammy_python_3.9_cuda_12.4.1_base | 166M |
civo_jammy_python_3.9_cuda_11.8.0_tensorflow | 649M |
civo_jammy_python_3.11_cuda_11.8.0_tensorflow | 677M |
civo_jammy_python_3.10_cuda_11.8.0_tensorflow | 653M |
civo_jammy_python_3.10_cuda_12.4.1_tensorflow | 655M |
civo_jammy_python_3.11_cuda_12.4.1_tensorflow | 678M |
civo_focal_python_3.9_cuda_11.8.0_tensorflow | 650M |
civo_focal_python_3.11_cuda_12.4.1_tensorflow | 680M |
civo_focal_python_3.10_cuda_12.4.1_pytorch | 710M |
civo_focal_python_3.9_cuda_12.4.1_tensorflow | 651M |
civo_focal_python_3.10_cuda_11.8.0_pytorch | 709M |
civo_focal_python_3.11_cuda_11.8.0_tensorflow | 678M |
civo_focal_python_3.10_cuda_12.4.1_tensorflow | 656M |
civo_focal_python_3.9_cuda_12.4.1_pytorch | 706M |
civo_focal_python_3.11_cuda_12.4.1_pytorch | 738M |
civo_jammy_python_3.9_cuda_11.8.0_base | 165M |
civo_focal_python_3.10_cuda_11.8.0_base | 170M |
civo_focal_python_3.11_cuda_11.8.0_base | 186M |
civo_focal_python_3.9_cuda_11.8.0_base | 166M |
civo_jammy_python_3.10_cuda_11.8.0_base | 169M |
civo_jammy_python_3.11_cuda_11.8.0_base | 184M |
civo_focal_python_3.10_cuda_12.4.1_base | 172M |
civo_focal_python_3.11_cuda_12.4.1_base | 187M |
civo_focal_python_3.9_cuda_12.4.1_base | 168M |
civo_focal_python_3.11_cuda_12.4.1_pytorch | 738M |
civo_jammy_python_3.9_cuda_11.8.0_base | 165M |
civo_focal_python_3.10_cuda_11.8.0_base | 170M |
civo_focal_python_3.11_cuda_11.8.0_base | 186M |
civo_focal_python_3.9_cuda_11.8.0_base | 166M |
civo_jammy_python_3.10_cuda_11.8.0_base | 169M |
civo_jammy_python_3.11_cuda_11.8.0_base | 184M |
civo_focal_python_3.10_cuda_12.4.1_base | 172M |
civo_focal_python_3.11_cuda_12.4.1_base | 187M |
civo_focal_python_3.9_cuda_12.4.1_base | 168M |
Check out civo-vllm-docker for an example implementation.