forked from TuSimple/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_imagenet.R
123 lines (115 loc) · 5.5 KB
/
train_imagenet.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#
# This file shows how to train ImageNet dataset with several Convolutional Neural Network architectures in R.
# More information: https://blogs.technet.microsoft.com/machinelearning/2016/11/15/imagenet-deep-neural-network-training-using-microsoft-r-server-and-azure-gpu-vms/
#
# To train ResNet-18:
# Rscript train_imagenet.R --network resnet --depth 18 --batch-size 512 --lr 0.1 --lr-factor 0.94 --gpu 0,1,2,3 --num-round 120 /
# --data-dir /path/to/data --train-dataset train.rec --val-dataset val.rec --log-dir $PWD --log-file resnet18-log.txt /
# --model-prefix resnet18 --kv-store device
#
# Train imagenet
require(mxnet)
require(argparse)
# Iterator
get_iterator <- function(args) {
data.shape <- c(args$data_shape, args$data_shape, 3)
train = mx.io.ImageRecordIter(
path.imgrec = file.path(args$data_dir, args$train_dataset),
batch.size = args$batch_size,
data.shape = data.shape,
mean.r = 123.68,
mean.g = 116.779,
mean.b = 103.939,
rand.crop = TRUE,
rand.mirror = TRUE
)
val = mx.io.ImageRecordIter(
path.imgrec = file.path(args$data_dir, args$val_dataset),
batch.size = args$batch_size,
data.shape = data.shape,
mean.r = 123.68,
mean.g = 116.779,
mean.b = 103.939,
rand.crop = FALSE,
rand.mirror = FALSE
)
ret = list(train=train, value=val)
}
# parse arguments
parse_args <- function() {
parser <- ArgumentParser(description='train an image classifer on ImageNet')
parser$add_argument('--network', type='character', default='resnet',
choices = c('resnet', 'inception-bn', 'googlenet', 'inception-resnet-v1',
'inception-resnet-v2'),
help = 'the cnn to use')
parser$add_argument('--data-dir', type='character', help='the input data directory')
parser$add_argument('--gpus', type='character',
help='the gpus will be used, e.g "0,1,2,3"')
parser$add_argument('--batch-size', type='integer', default=128,
help='the batch size')
parser$add_argument('--lr', type='double', default=.01,
help='the initial learning rate')
parser$add_argument('--lr-factor', type='double', default=1,
help='times the lr with a factor for every lr-factor-epoch epoch')
parser$add_argument('--lr-factor-epoch', type='double', default=1,
help='the number of epoch to factor the lr, could be .5')
parser$add_argument('--lr-multifactor', type='character',
help='the epoch at which the lr is changed, e.g "15,30,45"')
parser$add_argument('--mom', type='double', default=.9,
help='momentum for sgd')
parser$add_argument('--wd', type='double', default=.0001,
help='weight decay for sgd')
parser$add_argument('--clip-gradient', type='double', default=5,
help='clip min/max gradient to prevent extreme value')
parser$add_argument('--model-prefix', type='character',
help='the prefix of the model to load/save')
parser$add_argument('--load-epoch', type='integer',
help="load the model on an epoch using the model-prefix")
parser$add_argument('--num-round', type='integer', default=10,
help='the number of iterations over training data to train the model')
parser$add_argument('--kv-store', type='character', default='local',
help='the kvstore type')
parser$add_argument('--num-examples', type='integer', default=1281167,
help='the number of training examples')
parser$add_argument('--num-classes', type='integer', default=1000,
help='the number of classes')
parser$add_argument('--log-file', type='character',
help='the name of log file')
parser$add_argument('--log-dir', type='character', default="/tmp/",
help='directory of the log file')
parser$add_argument('--train-dataset', type='character', default="train.rec",
help='train dataset name')
parser$add_argument('--val-dataset', type='character', default="val.rec",
help="validation dataset name")
parser$add_argument('--data-shape', type='integer', default=224,
help='set images shape')
parser$add_argument('--depth', type='integer',
help='the depth for resnet, it can be a value among 18, 50, 101, 152, 200, 269')
parser$parse_args()
}
args <- parse_args()
# network
if (args$network == 'inception-bn'){
source("symbol_inception-bn.R")
} else if (args$network == 'googlenet'){
if(args$data_shape < 299) stop(paste0("The data shape for ", args$network, " has to be at least 299"))
source("symbol_googlenet.R")
} else if (args$network == 'inception-resnet-v1'){
if(args$data_shape < 299) stop(paste0("The data shape for ", args$network, " has to be at least 299"))
source("symbol_inception-resnet-v1.R")
} else if (args$network == 'inception-resnet-v2'){
if(args$data_shape < 299) stop(paste0("The data shape for ", args$network, " has to be at least 299"))
source("symbol_inception-resnet-v2.R")
} else if (args$network == 'resnet'){
source("symbol_resnet-v2.R")
} else{
stop("Wrong network")
}
if (is.null(args$depth)){
net <- get_symbol(args$num_classes)
} else{
net <- get_symbol(args$num_classes, args$depth)
}
# train
source("train_model.R")
train_model.fit(args, net, get_iterator(args))