forked from TuSimple/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_mnist.R
146 lines (132 loc) · 5.28 KB
/
train_mnist.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
require(argparse)
require(mxnet)
download_ <- function(data_dir) {
dir.create(data_dir, showWarnings = FALSE)
setwd(data_dir)
if ((!file.exists('train-images-idx3-ubyte')) ||
(!file.exists('train-labels-idx1-ubyte')) ||
(!file.exists('t10k-images-idx3-ubyte')) ||
(!file.exists('t10k-labels-idx1-ubyte'))) {
download.file(url='http://data.mxnet.io/mxnet/data/mnist.zip',
destfile='mnist.zip', method='wget')
unzip("mnist.zip")
file.remove("mnist.zip")
}
setwd("..")
}
# multi-layer perceptron
get_mlp <- function() {
data <- mx.symbol.Variable('data')
fc1 <- mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
act1 <- mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
fc2 <- mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
act2 <- mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
fc3 <- mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10)
mlp <- mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
mlp
}
# LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick
# Haffner. "Gradient-based learning applied to document recognition."
# Proceedings of the IEEE (1998)
get_lenet <- function() {
data <- mx.symbol.Variable('data')
# first conv
conv1 <- mx.symbol.Convolution(data=data, kernel=c(5,5), num_filter=20)
tanh1 <- mx.symbol.Activation(data=conv1, act_type="tanh")
pool1 <- mx.symbol.Pooling(data=tanh1, pool_type="max",
kernel=c(2,2), stride=c(2,2))
# second conv
conv2 <- mx.symbol.Convolution(data=pool1, kernel=c(5,5), num_filter=50)
tanh2 <- mx.symbol.Activation(data=conv2, act_type="tanh")
pool2 <- mx.symbol.Pooling(data=tanh2, pool_type="max",
kernel=c(2,2), stride=c(2,2))
# first fullc
flatten <- mx.symbol.Flatten(data=pool2)
fc1 <- mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 <- mx.symbol.Activation(data=fc1, act_type="tanh")
# second fullc
fc2 <- mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
# loss
lenet <- mx.symbol.SoftmaxOutput(data=fc2, name='softmax')
lenet
}
get_iterator <- function(data_shape) {
get_iterator_impl <- function(args) {
data_dir = args$data_dir
if (!grepl('://', args$data_dir))
download_(args$data_dir)
flat <- TRUE
if (length(data_shape) == 3) flat <- FALSE
train = mx.io.MNISTIter(
image = paste0(data_dir, "train-images-idx3-ubyte"),
label = paste0(data_dir, "train-labels-idx1-ubyte"),
input_shape = data_shape,
batch_size = args$batch_size,
shuffle = TRUE,
flat = flat)
val = mx.io.MNISTIter(
image = paste0(data_dir, "t10k-images-idx3-ubyte"),
label = paste0(data_dir, "t10k-labels-idx1-ubyte"),
input_shape = data_shape,
batch_size = args$batch_size,
flat = flat)
ret = list(train=train, value=val)
}
get_iterator_impl
}
parse_args <- function() {
parser <- ArgumentParser(description='train an image classifer on mnist')
parser$add_argument('--network', type='character', default='mlp',
choices = c('mlp', 'lenet'),
help = 'the cnn to use')
parser$add_argument('--data-dir', type='character', default='mnist/',
help='the input data directory')
parser$add_argument('--gpus', type='character',
help='the gpus will be used, e.g "0,1,2,3"')
parser$add_argument('--batch-size', type='integer', default=128,
help='the batch size')
parser$add_argument('--lr', type='double', default=.05,
help='the initial learning rate')
parser$add_argument('--mom', type='double', default=.9,
help='momentum for sgd')
parser$add_argument('--model-prefix', type='character',
help='the prefix of the model to load/save')
parser$add_argument('--num-round', type='integer', default=10,
help='the number of iterations over training data to train the model')
parser$add_argument('--kv-store', type='character', default='local',
help='the kvstore type')
parser$parse_args()
}
args = parse_args()
if (args$network == 'mlp') {
data_shape <- c(784)
net <- get_mlp()
} else {
data_shape <- c(28, 28, 1)
net <- get_lenet()
}
# train
data_loader <- get_iterator(data_shape)
data <- data_loader(args)
train <- data$train
val <- data$value
if (is.null(args$gpus)) {
devs <- mx.cpu()
} else {
devs <- lapply(unlist(strsplit(args$gpus, ",")), function(i) {
mx.gpu(as.integer(i))
})
}
mx.set.seed(0)
model <- mx.model.FeedForward.create(
X = train,
eval.data = val,
ctx = devs,
symbol = net,
num.round = args$num_round,
array.batch.size = args$batch_size,
learning.rate = args$lr,
momentum = args$mom,
eval.metric = mx.metric.accuracy,
initializer = mx.init.uniform(0.07),
batch.end.callback = mx.callback.log.train.metric(100))