forked from chemprop/chemprop
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.cfg
65 lines (61 loc) · 1.96 KB
/
setup.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
[metadata]
name = chemprop
version = 1.6.1
author = Kyle Swanson, Kevin Yang, Wengong Jin, Lior Hirschfeld, Allison Tam
author_email = chemprop@mit.edu
license = MIT
description = Molecular Property Prediction with Message Passing Neural Networks
keywords =
chemistry
machine learning
property prediction
message passing neural network
graph neural network
url = https://github.com/chemprop/chemprop
download_url = https://github.com/chemprop/chemprop/v_1.6.1.tar.gz
long_description = file: README.md
long_description_content_type = text/markdown
classifiers =
Programming Language :: Python :: 3
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
License :: OSI Approved :: MIT License
Operating System :: OS Independent
project_urls =
Documentation = https://chemprop.readthedocs.io/en/latest/
Source = https://github.com/chemprop/chemprop
PyPi = https://pypi.org/project/chemprop/
Demo = http://chemprop.csail.mit.edu/
[options]
packages = find:
install_requires =
flask>=1.1.2
hyperopt>=0.2.3
matplotlib>=3.1.3
numpy>=1.18.1
pandas>=1.0.3
pandas-flavor>=0.2.0
scikit-learn>=0.22.2.post1
scipy>=1.4.1
sphinx>=3.1.2
tensorboardX>=2.0
torch>=1.4.0
tqdm>=4.45.0
typed-argument-parser>=1.6.1
rdkit>=2020.03.1.0
descriptastorus
python_requires = >=3.7
[options.entry_points]
console_scripts =
chemprop_train=chemprop.train:chemprop_train
chemprop_predict=chemprop.train:chemprop_predict
chemprop_fingerprint=chemprop.train:chemprop_fingerprint
chemprop_hyperopt=chemprop.hyperparameter_optimization:chemprop_hyperopt
chemprop_interpret=chemprop.interpret:chemprop_interpret
chemprop_web=chemprop.web.run:chemprop_web
sklearn_train=chemprop.sklearn_train:sklearn_train
sklearn_predict=chemprop.sklearn_predict:sklearn_predict
[options.extras_require]
test = pytest>=6.2.2; parameterized>=0.8.1
[options.package_data]
chemprop = py.typed