This is the code of paper: Variational Graph Generator for Multi-View Graph Clustering.
To cite the paper, please refer:
@misc{chen2022variational,
title={Variational Graph Generator for Multi-View Graph Clustering},
author={Jianpeng Chen and Yawen Ling and Jie Xu and Yazhou Ren and Shudong Huang and Xiaorong Pu and Zhifeng Hao and Philip S. Yu and Lifang He},
year={2022},
eprint={2210.07011},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Python 3.8
- Pytorch 1.11.0
- munkres 1.1.4
- scikit-learn 1.0.1
- scipy 1.8.0
ACM and DBLP are included in ./data/
. The other datasets are public available.
Dataset | #Clusters | #Nodes | #Features | Graphs |
---|---|---|---|---|
ACM | 3 | 3025 | 1830 |
|
DBLP | 4 | 4057 | 334 |
|
Amazon photos | 8 | 7487 | 745 7487 |
|
Amazon computers | 10 | 13381 | 767 13381 |
|
# Test VGMGC on ACM dataset
python vgmgc.py --dataset 'acm' --train False --model_name 'vgmgc_acm.pkl' --order 8 --lam_emd 1
# Test VGMGC on DBLP dataset
python vgmgc.py --dataset 'dblp' --train False --model_name 'vgmgc_dblp.pkl' --order 8 --lam_emd 5
# Train VGMGC on ACM dataset
python vgmgc.py --dataset 'acm' --train True --model_name 'vgmgc_acm1.pkl' --order 8 --weight_soft 0.9 --min_belief 0.7 --max_belief 0.99 --lam_emd 1 --kl_step 5 --lam_elbo_kl 1 --threshold 0.8 --temperature 5
# Train VGMGC on DBLP dataset
python vgmgc.py --dataset 'dblp' --train True --model_name 'vgmgc_dblp1.pkl' --order 8 --weight_soft 0.1 --min_belief 0.2 --max_belief 0.99 --lam_emd 5 --kl_step 10 --lam_elbo_kl 1 --threshold 0.8 --temperature 1
Parameters: More parameters and descriptions can be found in the script and paper.
NMI% | ARI% | ACC% | F1% | |
---|---|---|---|---|
ACM | 77.3 | 83.7 | 94.3 | 94.3 |
DBLP | 78.3 | 83.7 | 93.2 | 92.7 |
Amazon photos | 66.8 | 58.4 | 78.5 | 76.9 |
Amazon computers | 53.5 | 47.5 | 62.2 | 50.2 |