-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
223 lines (186 loc) · 13.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import math
import spotipy
from mdutils.mdutils import MdUtils
from spotipy.oauth2 import SpotifyOAuth
from objects import *
scope_lib = "user-library-read"
scope_playlist = "playlist-read-private"
my_pl_cnt = 0
global_length = 0
global_maximum_playlist_names = {}
global_minimum_playlist_names = {}
global_maximum_song_names = {}
global_maximum_song_artists = {}
def parse_time(time_ms) : # parses a time duration in ms into a h:m:s string
time_s = time_ms / 1000
time_min = time_s / 60
time_sec = time_s % 60
if time_s > 3599 :
time_hour = time_s / 3600
time_min = time_s % 3600 / 60
time_min_sec = str(math.trunc(time_hour)) + ":" + "{0:0>2}".format(str(math.trunc(time_min))) + ":" + "{0:0>2}".format(str(round(time_sec)))
else :
time_min_sec = str(math.trunc(time_min)) + ":" + "{0:0>2}".format(str(round(time_sec)))
return time_min_sec
def update_audio_feature(audio_feature, audio_features) :
if audio_features[audio_feature] > song_maximums[audio_feature]:
song_maximums[audio_feature] = audio_features[audio_feature]
song_info = sp.track(audio_features['id'])
global_maximum_song_names[audio_feature] = song_info['name']
global_maximum_song_artists[audio_feature] = song_info['artists'][0]['name']
# auth token
sp = spotipy.Spotify(auth_manager=SpotifyOAuth(client_id = os.environ.get('SPOTIFY_ID'), client_secret = os.environ.get('SPOTIFY_SECRET'), redirect_uri = os.environ.get('REDIRECT_URI'), scope=scope_playlist))
res_playlists = sp.current_user_playlists() # get list of playlists
# md files
playlists_stats = MdUtils(file_name='playlists_stats', title='Individual Playlist Statistics')
global_stats = MdUtils(file_name='README.md', title='Spotify Playlist Statistics')
for idx, playlist in enumerate(res_playlists['items']) : # for each playlist on account
playlist_name = playlist['name']
tracks = playlist['tracks']
num_songs = tracks['total']
owner = playlist['owner']
playlist_id = playlist['id']
playlist_sums = {
'popularity': 0,
'duration_ms': 0,
'danceability': 0,
'energy': 0,
'loudness': 0,
'speechiness': 0,
'acousticness': 0,
'instrumentalness': 0,
'valence': 0
}
maximum_song_length = 0
maximum_song_popularity = 0
track_uris = []
if owner['id'] == "ckoegel1006" : # do for only playlists created by me
res_pl = sp.playlist(playlist_id)
tracklist = res_pl['tracks']
my_pl_cnt += 1
while 1:
for cnt, track in enumerate(tracklist['items']) :
track_info = track['track'] #get name, length, and popularity from here
track_uris.append(track_info['id'])
playlist_sums['popularity'] += track_info['popularity']
# find maximum popularity value per playlist
if track_info['popularity'] > maximum_song_popularity :
maximum_song_popularity = track_info['popularity']
most_popular_song_name = track_info['name']
most_popular_song_artist = track_info['artists'][0]['name']
# find maximum song length per playlist
if track_info['duration_ms'] > maximum_song_length :
maximum_song_length = track_info['duration_ms']
longest_song_name = track_info['name']
longest_song_artist = track_info['artists'][0]['name']
if cnt == 99 : # for dealing with paginated results if playlist has over 100 songs
audio_feats = sp.audio_features(tracks = track_uris) # get "audio features" for a group of tracks
for ind, song in enumerate(audio_feats) : # for each songs features
# add to playlist sums and update min and max songs for each audio feature
for audio_feature in audio_features_list:
playlist_sums[audio_feature] += audio_feats[ind][audio_feature]
update_audio_feature(audio_feature, audio_feats[ind])
playlist_sums['duration_ms'] += audio_feats[ind]['duration_ms']
track_uris = [] # reset list of uris since max that can be requested at once is 100
if tracklist['next'] : # if another page of tracks exists
tracklist = sp.next(tracklist)
else :
audio_feats = sp.audio_features(tracks = track_uris)
for ind, song in enumerate(audio_feats) : # does the same as above but for a page of less than 100 songs
# add to playlist sums and update min and max songs for each audio feature
for audio_feature in audio_features_list:
playlist_sums[audio_feature] += audio_feats[ind][audio_feature]
update_audio_feature(audio_feature, audio_feats[ind])
playlist_sums['duration_ms'] += audio_feats[ind]['duration_ms']
track_uris = []
break
# calculate averages for playlists and add to global total
playlist_averages = {}
for audio_feature in playlist_sums.keys():
playlist_averages[audio_feature] = playlist_sums[audio_feature] / num_songs
library_averages[audio_feature] += playlist_averages[audio_feature]
global_length += playlist_sums['duration_ms']
# find maximum length song across all playlists
if maximum_song_length > song_maximums['duration_ms']:
song_maximums['duration_ms'] = maximum_song_length
global_maximum_song_names['duration_ms'] = longest_song_name
global_maximum_song_artists['duration_ms'] = longest_song_artist
# find maximum popularity song across all playlists
if maximum_song_popularity > song_maximums['popularity']:
song_maximums['popularity'] = maximum_song_popularity
global_maximum_song_names['popularity'] = most_popular_song_name
global_maximum_song_artists['popularity'] = most_popular_song_artist
# find playlist with the highest average values for audio features
for audio_feature in playlist_averages.keys():
if playlist_averages[audio_feature] > global_playlist_maxes[audio_feature]:
global_playlist_maxes[audio_feature] = playlist_averages[audio_feature]
global_maximum_playlist_names[audio_feature] = playlist_name
# find playlist with the lowest average values for audio features
for audio_feature in playlist_averages.keys():
if playlist_averages[audio_feature] < global_playlist_mins[audio_feature]:
global_playlist_mins[audio_feature] = playlist_averages[audio_feature]
global_minimum_playlist_names[audio_feature] = playlist_name
# format playlist averages for writing to md table
for key in playlist_averages: playlist_averages[key] = round(playlist_averages[key], 3)
playlist_averages['duration_ms'] = parse_time(playlist_averages['duration_ms'])
playlist_averages['length'] = playlist_averages.pop('duration_ms')
feats = []
feats.extend(key.capitalize() for key in playlist_averages.keys())
feats.extend(playlist_averages.values())
# create playlist stats md file
playlists_stats.new_header(level=2, title=playlist_name, style='setext', add_table_of_contents='n')
playlists_stats.new_line("Playlist Averages", bold_italics_code='b')
playlists_stats.new_table(columns=len(playlist_averages), rows=2, text=feats)
playlists_stats.new_line("Number of Songs: %d" % (num_songs))
playlists_stats.new_line("Most Popular Song: %s by %s (%d)" % (most_popular_song_name, most_popular_song_artist, maximum_song_popularity))
playlists_stats.new_line("Longest Song: %s by %s (%s)" % (longest_song_name, longest_song_artist, parse_time(maximum_song_length)))
playlists_stats.new_line("Playlist Duration: %s" % (parse_time(playlist_sums['duration_ms'])))
playlists_stats.new_line()
playlists_stats.create_md_file()
for audio_feature in library_averages.keys():
library_averages[audio_feature] /= my_pl_cnt
global_stats.new_header(level=2, title="Playlist Stats", style='setext', add_table_of_contents='n')
global_stats.new_line("Highs:", bold_italics_code='b')
global_stats.new_line("Most Danceable Playlist: %s (%.5f)" % (global_maximum_playlist_names['danceability'], global_playlist_maxes['danceability']))
global_stats.new_line("Most Energetic Playlist: %s (%.5f)" % (global_maximum_playlist_names['energy'], global_playlist_maxes['energy']))
global_stats.new_line("Loudest Playlist: %s (%.5fdB)" % (global_maximum_playlist_names['loudness'], global_playlist_maxes['loudness']))
global_stats.new_line("Most Speechful Playlist: %s (%.5f)" % (global_maximum_playlist_names['speechiness'], global_playlist_maxes['speechiness']))
global_stats.new_line("Most Acoustic Playlist: %s (%.5f)" % (global_maximum_playlist_names['acousticness'], global_playlist_maxes['acousticness']))
global_stats.new_line("Most Instrumental Playlist: %s (%.5f)" % (global_maximum_playlist_names['instrumentalness'], global_playlist_maxes['instrumentalness']))
global_stats.new_line("Happiest Playlist: %s (%.5f)" % (global_maximum_playlist_names['valence'], global_playlist_maxes['valence']))
global_stats.new_line("Most Popular Playlist: %s (%.5f)" % (global_maximum_playlist_names['popularity'], global_playlist_maxes['popularity']))
global_stats.new_line("Playlist with Longest Average Song Length: %s (%s)\n" % (global_maximum_playlist_names['duration_ms'], parse_time(global_playlist_maxes['duration_ms'])))
global_stats.new_line("Lows:", bold_italics_code='b')
global_stats.new_line("Least Danceable Playlist: %s (%.5f)" % (global_minimum_playlist_names['danceability'], global_playlist_mins['danceability']))
global_stats.new_line("Least Energetic Playlist: %s (%.5f)" % (global_minimum_playlist_names['energy'], global_playlist_mins['energy']))
global_stats.new_line("Quietest Playlist: %s (%.5fdB)" % (global_minimum_playlist_names['loudness'], global_playlist_mins['loudness']))
global_stats.new_line("Least Speechful Playlist: %s (%.5f)" % (global_minimum_playlist_names['speechiness'], global_playlist_mins['speechiness']))
global_stats.new_line("Least Acoustic Playlist: %s (%.5f)" % (global_minimum_playlist_names['acousticness'], global_playlist_mins['acousticness']))
global_stats.new_line("Least Instrumental Playlist: %s (%.5f)" % (global_minimum_playlist_names['instrumentalness'], global_playlist_mins['instrumentalness']))
global_stats.new_line("Saddest Playlist: %s (%.5f)" % (global_minimum_playlist_names['valence'], global_playlist_mins['valence']))
global_stats.new_line("Least Popular Playlist: %s (%.5f)" % (global_minimum_playlist_names['popularity'], global_playlist_mins['popularity']))
global_stats.new_line("Playlist with Shortest Average Song Length: %s (%s)\n" % (global_minimum_playlist_names['duration_ms'], parse_time(global_playlist_mins['duration_ms'])))
global_stats.new_line("Totals:", bold_italics_code='b')
global_stats.new_line("Average Danceability: %.5f" % (library_averages['danceability']))
global_stats.new_line("Average Energy: %.5f" % (library_averages['energy']))
global_stats.new_line("Average Loudness: %.5fdB" % (library_averages['loudness']))
global_stats.new_line("Average Speechfulness: %.5f" % (library_averages['speechiness']))
global_stats.new_line("Average Acousticness: %.5f" % (library_averages['acousticness']))
global_stats.new_line("Average Instrumentalness: %.5f" % (library_averages['instrumentalness']))
global_stats.new_line("Overall Happiness: %.5f" % (library_averages['valence']))
global_stats.new_line("Overall Popularity: %.5f" % (library_averages['popularity']))
global_stats.new_line("Average Song Length: %s" % (parse_time(library_averages['duration_ms'])))
global_stats.new_line("Total Length of All Playlists: %s\n" % (parse_time(global_length)))
global_stats.new_header(level=2, title="Song Stats", style='setext', add_table_of_contents='n')
global_stats.new_line("Highs:", bold_italics_code='b')
global_stats.new_line("Most Danceable Song: %s by %s (%.5f)" % (global_maximum_song_names['danceability'], global_maximum_song_artists['danceability'], song_maximums['danceability']))
global_stats.new_line("Most Energetic Song: %s by %s (%.5f)" % (global_maximum_song_names['energy'], global_maximum_song_artists['energy'], song_maximums['energy']))
global_stats.new_line("Loudest Song: %s by %s (%.5fdB)" % (global_maximum_song_names['loudness'], global_maximum_song_artists['loudness'], song_maximums['loudness']))
global_stats.new_line("Most Speechful Song: %s by %s (%.5f)" % (global_maximum_song_names['speechiness'], global_maximum_song_artists['speechiness'], song_maximums['speechiness']))
global_stats.new_line("Most Acoustic Song: %s by %s (%.5f)" % (global_maximum_song_names['acousticness'], global_maximum_song_artists['acousticness'], song_maximums['acousticness']))
global_stats.new_line("Most Instrumental Song: %s by %s (%.5f)" % (global_maximum_song_names['instrumentalness'], global_maximum_song_artists['instrumentalness'], song_maximums['instrumentalness']))
global_stats.new_line("Happiest Song: %s by %s (%.5f)" % (global_maximum_song_names['valence'], global_maximum_song_artists['valence'], song_maximums['valence']))
global_stats.new_line("Longest Song: %s by %s (%s)" % (global_maximum_song_names['duration_ms'], global_maximum_song_artists['duration_ms'], parse_time(song_maximums['duration_ms'])))
global_stats.new_line("Most Popular Song : %s by %s (%d)" % (global_maximum_song_names['popularity'], global_maximum_song_artists['popularity'], song_maximums['popularity']))
global_stats.create_md_file()