-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_sim_showoff1_poster.py
176 lines (140 loc) · 7.57 KB
/
plot_sim_showoff1_poster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
# coding: utf-8
###############################################################
# Plot multipanel figures showing evolution of the Fiducial sim
###############################################################
import yt
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm, SymLogNorm, LinearSegmentedColormap
from matplotlib.ticker import FixedLocator, MultipleLocator, NullFormatter, NullLocator
from matplotlib.patches import Circle
from mpl_toolkits.axes_grid1 import ImageGrid
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar
plt.rcParams.update({"font.size":18})
ds_fid20 = yt.load("../sample_data/fid/DD0020/DD0020") # 1 Gyr
ds_fid40 = yt.load("../sample_data/fid/DD0040/DD0040") # 2 Gyr
ds_fid60 = yt.load("../sample_data/fid/DD0060/DD0060") # 3 Gyr
ds_fid80 = yt.load("../sample_data/fid/DD0080/DD0080") # 4 Gyr
# code length is the same in all sims
center = yt.YTQuantity(ds_fid20.quan(0.5,'code_length').to('cm'))
thickness = 2*yt.YTQuantity(3.5,'kpc')
width = yt.YTQuantity(600, 'kpc')
extent = (-width/2, width/2, -width/2, width/2)
fields = ['density','entropy','radial_velocity']
rect_fid20 = ds_fid20.region([center, center, center],
[center-thickness/2, center-width/2, center-width/2],
[center+thickness/2, center+width/2, center+width/2])
rect_fid40 = ds_fid40.region([center, center, center],
[center-thickness/2, center-width/2, center-width/2],
[center+thickness/2, center+width/2, center+width/2])
rect_fid60 = ds_fid60.region([center, center, center],
[center-thickness/2, center-width/2, center-width/2],
[center+thickness/2, center+width/2, center+width/2])
rect_fid80 = ds_fid80.region([center, center, center],
[center-thickness/2, center-width/2, center-width/2],
[center+thickness/2, center+width/2, center+width/2])
p_fid20 = yt.ProjectionPlot(ds_fid20, 'x', fields, width=width,
data_source=rect_fid20, weight_field='ones')
frb_fid20 = p_fid20.data_source.to_frb(width, 512)
p_fid40 = yt.ProjectionPlot(ds_fid40, 'x', fields, width=width,
data_source=rect_fid40, weight_field='ones')
frb_fid40 = p_fid40.data_source.to_frb(width, 512)
p_fid60 = yt.ProjectionPlot(ds_fid60, 'x', fields, width=width,
data_source=rect_fid60, weight_field='ones')
frb_fid60 = p_fid60.data_source.to_frb(width, 512)
p_fid80 = yt.ProjectionPlot(ds_fid80, 'x', fields, width=width,
data_source=rect_fid80, weight_field='ones')
frb_fid80 = p_fid80.data_source.to_frb(width, 512)
fig = plt.figure(figsize=(14.5,10))
grid = ImageGrid(fig, 111, nrows_ncols=(len(fields),4),
axes_pad=0, label_mode='1', share_all=True,
cbar_mode='edge', cbar_location='right',
cbar_pad=0)
grid.axes_llc.tick_params(labelleft=False, labelbottom=False)
for ax in grid:
ax.tick_params(which='both', axis='both', direction='in')
ax.xaxis.set_major_locator(FixedLocator([-300,-200,-100,0,100,200,300]))
ax.xaxis.set_minor_locator(MultipleLocator(20))
d_norm = LogNorm(1e-32, 1e-26)
k_norm = LogNorm(1e0, 1e6)
v_norm = SymLogNorm(1, linscale=0.2, base=10, vmin=-3e3, vmax=3e3)
ent_lo_cmap = plt.get_cmap('crest')(np.linspace(0, 1, 86))
ent_hi_cmap = plt.get_cmap('flare_r')(np.linspace(0, 1, 170))
colors = np.vstack((ent_lo_cmap, ent_hi_cmap))
ent_cmap = LinearSegmentedColormap.from_list('crest_flare', colors)
ax = grid.axes_column[0]
bar = AnchoredSizeBar(ax[2].transData, 100, "100 kpc", 8,
label_top=True, color='white', frameon=False,
borderpad=1, size_vertical=5,
fontproperties={'size':'x-large',
'weight':'bold'})
ax[2].add_artist(bar)
circle = Circle((0,0), 206, transform=ax[1].transData,
edgecolor='white', fill=False, ls='--')
ax[1].add_artist(circle)
ax[0].text(0.04, 0.88, f"{ds_fid20.current_time.to('Gyr'):.2f}",
transform=ax[0].transAxes,
fontdict={'size':'x-large','weight':'bold','color':'white'})
d_fid20 = ax[0].imshow(np.array(frb_fid20['density']),
origin='lower', extent=extent,
norm=d_norm)
k_fid20 = ax[1].imshow(np.array(frb_fid20['entropy']),
origin='lower', extent=extent,
cmap=ent_cmap, norm=k_norm)
v_fid20 = ax[2].imshow(np.array(frb_fid20['radial_velocity'])/1e5,
origin='lower', extent=extent,
cmap='coolwarm', norm=v_norm)
ax = grid.axes_column[1]
ax[0].text(0.04, 0.88, f"{ds_fid40.current_time.to('Gyr'):.2f}",
transform=ax[0].transAxes,
fontdict={'size':'x-large','weight':'bold','color':'white'})
d_fid40 = ax[0].imshow(np.array(frb_fid40['density']),
origin='lower', extent=extent,
norm=d_norm)
k_fid40 = ax[1].imshow(np.array(frb_fid40['entropy']),
origin='lower', extent=extent,
cmap=ent_cmap, norm=k_norm)
v_fid40 = ax[2].imshow(np.array(frb_fid40['radial_velocity'])/1e5,
origin='lower', extent=extent,
cmap='coolwarm', norm=v_norm)
ax = grid.axes_column[2]
ax[0].text(0.04, 0.88, f"{ds_fid60.current_time.to('Gyr'):.2f}",
transform=ax[0].transAxes,
fontdict={'size':'x-large','weight':'bold','color':'white'})
d_fid60 = ax[0].imshow(np.array(frb_fid60['density']),
origin='lower', extent=extent,
norm=d_norm)
k_fid60 = ax[1].imshow(np.array(frb_fid60['entropy']),
origin='lower', extent=extent,
cmap=ent_cmap, norm=k_norm)
v_fid60 = ax[2].imshow(np.array(frb_fid60['radial_velocity'])/1e5,
origin='lower', extent=extent,
cmap='coolwarm', norm=v_norm)
ax = grid.axes_column[3]
ax[0].text(0.04, 0.88, f"{ds_fid80.current_time.to('Gyr'):.2f}",
transform=ax[0].transAxes,
fontdict={'size':'x-large','weight':'bold','color':'white'})
d_fid80 = ax[0].imshow(np.array(frb_fid80['density']),
origin='lower', extent=extent,
norm=d_norm)
k_fid80 = ax[1].imshow(np.array(frb_fid80['entropy']),
origin='lower', extent=extent,
cmap=ent_cmap, norm=k_norm)
v_fid80 = ax[2].imshow(np.array(frb_fid80['radial_velocity'])/1e5,
origin='lower', extent=extent,
cmap='coolwarm', norm=v_norm)
d_cb = fig.colorbar(d_fid80, cax=grid.cbar_axes[0], extend='both')
k_cb = fig.colorbar(k_fid80, cax=grid.cbar_axes[1], extend='both')
v_cb = fig.colorbar(v_fid80, cax=grid.cbar_axes[2], extend='both')
d_cb.set_ticks(FixedLocator([1e-31, 1e-29, 1e-27, 1e-25, 1e-32, 1e-30, 1e-28, 1e-26]))
k_cb.set_ticks(FixedLocator([1e0, 1e2, 1e4, 1e6, 1e-1, 1e1, 1e3, 1e5]))
v_cb.set_ticks(FixedLocator([-1e3,-1e2,-1e1,0,1e1,1e2,1e3]))
v_cb.minorticks_off()
d_cb.set_label(r'Density [g cm$^{-3}$]', labelpad=12.0)
k_cb.set_label(r'Entropy [keV cm$^2$]', labelpad=12.0)
v_cb.set_label(r'Radial Velocity [km/s]', labelpad=12.0)
fig.subplots_adjust(left=0.01, right=0.9, bottom=0.01, top=0.99)
fig.savefig("../fig_edge-ev_fid_poster.pdf", transparent=True)
fig.savefig("../fig_edge-ev_fid_poster.png", dpi=300)