Skip to content
/ LENS Public

LENS: A LEO Satellite Network Measurement Dataset

License

Notifications You must be signed in to change notification settings

clarkzjw/LENS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LENS: A LEO Satellite Network Measurement Dataset

This repository contains the dataset for the paper LENS: A LEO Satellite Network Measurement Dataset published in ACM Multimedia Systems Conference (MMSys'24) Open-source Software and Dataset (ODS) track.

The original dataset snapshot for the published paper can be found at commit c084c11.

You can also check out our MMSys'24 paper Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH that utilizes this dataset for low-latency live video streaming over Starlink.

Table of Contents

For inside-out measurements, the datasets are collected with multiple dishes located in the following regions.

Dish Locations

Map of dish locations

ID Location Dish Generation Point-of-Presence Service Tier Obstruction Map
Canada
victoria_active_1 [1] Victoria, BC, Canada rev3_proto2 Seattle Standard
victoria_active_2 Victoria, BC, Canada rev3_proto2 Seattle Mobile
victoria_inactive Victoria, BC, Canada rev3_proto2 Seattle Inactive Mobile, Roam
vancouver Vancouver, BC, Canada rev2_proto3 Seattle Standard [2]
calgary Calgary, AB, Canada rev3_proto2 Seattle Inactive Standard
ottawa Ottawa, ON, Canada rev3_proto2 New York Standard [6]
ulukhaktok Ulukhaktok, NT, Canada rev3_proto2 Seattle Standard
United States
seattle Seattle, WA, USA rev3_proto2 Seattle Standard
seattle_hp Seattle, WA, USA hp1_proto1 Seattle Priority
alaska Anchorage, AK, USA rev3_proto2 Seattle Mobile
iowa Iowa City, IA, USA rev1_pre_production Chicago Standard
denver Denver, CO, USA rev3_proto2 Denver Mobile, Roam [7]
dallas Oxford, MS, USA rev3_proto2 Dallas Inactive Standard
stanford Stanford, CA, USA rev3_proto2 San Jose Standard
slc Salt Lake City, UT, USA rev3_proto2 Seattle Standard

Europe:

ID Location Dish Generation Point-of-Presence Service Tier Obstruction Map
louvain [8] Louvain, Belgium rev3_proto2 Frankfurt / London [5] Standard
bruhl Brühl, Germany rev4_prod2 Frankfurt Standard

Africa:

ID Location Dish Generation Point-of-Presence Service Tier Obstruction Map
seychelles [4] Seychelles rev3_proto2 Lagos / Frankfurt [3] Mobile, Roam

Asia:

ID Location Dish Generation Point-of-Presence Service Tier Obstruction Map
kanazawa Kanazawa, Japan rev3_proto2 Tokyo Mobile

Oceania:

ID Location Dish Generation Point-of-Presence Service Tier Obstruction Map
brisbane Brisbane, Australia rev3_proto2 Sydney Mobile

Ref:

Starlink dish generations

Source: https://twitter.com/olegkutkov/status/1742322178320670753/

Note:

  1. victoria_active_1 is also referred to as victoria in the dataset snapshots.
  2. The subscription plan associated with the vancouver dish was paused between 2023/12/29 and 2024/01/09, during which inactive measurements was conducted.
  3. The PoP associated with the seychelles dish was changed from Lagos to Frankfurt on 2023/12/08.
  4. The Starlink subscription at this installation has been canceled since March 2024, see 202403 for more details. Since 2024/08, there were some inactive measurements at this location.
  5. The PoP associated with the louvain dish was changed from Frankfurt to London, while the louvain dish is still referred to as frankfurt in the dataset snapshots.
  6. The Starlink subscription at this installation has been paused since March 2024, see 202403 for more details. Since 2024/07, there are inactive measurements at this location.
  7. The Starlink subscription at this installation has been paused since March 2024, see 202403 for more details. Since 2024/07, there are inactive measurements at this location.

Monthly Snapshots

The dataset is split into monthly snapshots. Each can be retrieved from Zenodo using the links below.

Monthly Snapshots Type Link Compressed Size Decompressed Size
2024-07 RAW Part1: LENS-2024-07.tar.zst.aa
Part2: LENS-2024-07.tar.zst.ab
Part3: LENS-2024-07.tar.zst.ac
Part4: LENS-2024-07.tar.zst.ad
117.7GB 1.4TB
2024-06 RAW Part1: LENS-2024-06.tar.zst.aa
Part2: LENS-2024-06.tar.zst.ab
Part3: LENS-2024-06.tar.zst.ac
92GB 1.1TB
2024-05 RAW Part1: LENS-2024-05.tar.zst.aa
Part2: LENS-2024-05.tar.zst.ab
Part3: LENS-2024-05.tar.zst.ac
99GB 1.2TB
2024-05 CSV LENS-2024-05-CSV.tar.zst.aa 32GB 111GB
2024-04 RAW Part1: LENS-2024-04.tar.zst.aa
Part2: LENS-2024-04.tar.zst.ab
Part3: LENS-2024-04.tar.zst.ac
Part4: LENS-2024-04.tar.zst.ad
119GB 1.4TB
2024-04 CSV LENS-2024-04-CSV.tar.zst.aa 38GB 131GB
2024-03 RAW TBA
2024-02 RAW TBA
2024-01 RAW Part1: LENS-2024-01.tar.zst.aa
Part2: LENS-2024-01.tar.zst.ab
Part3: LENS-2024-01.tar.zst.ac
Part4: LENS-2024-01.tar.zst.ad
Part5: LENS-2024-01.tar.zst.ae
174GB 2.1TB
2024-01 CSV Part1: LENS-2024-01-CSV.tar.zst.aa
Part2: LENS-2024-01-CSV.tar.zst.ab
50GB 161GB
2023-12 RAW Part1: LENS-2023-12.tar.zst.aa
Part2: LENS-2023-12.tar.zst.ab
Part3: LENS-2023-12.tar.zst.ac
Part4: LENS-2023-12.tar.zst.ad
135GB 1.6TB
2023-12 CSV LENS-2023-12-CSV.tar.zst.aa 39GB 125GB
2023-11 RAW Part1: LENS-2023-11.tar.zst.aa
Part2: LENS-2023-11.tar.zst.ab
72GB 854GB
2023-11 CSV LENS-2023-11-CSV.tar.zst.aa 21GB 68GB

Decompress Guide

Due to the file size limit on Zenodo, monthly snapshots are created in splitted tar archives using the following command.

e.g.,

tar -I "zstd -T24 -8" -cvf - LENS-2024-01 | split --bytes=40GB - LENS-2024-01.tar.zst.

To decompress, make sure Zstd is installed. Download all the splitted tar archives for the same month in the same folder, and decompress using the following command. Make sure you have enough disk space.

e.g.,

cat LENS-2024-01.tar.zst.* | tar --zstd -xf -

RAW dataset

RAW dataset contains IRTT metrics in .json formats and ping metrics in .txt formats. Examples of both files are shown below.

IRTT Example
{
  "version": {
      "irtt": "0.9.1-clarkzjw",
      "protocol": 1,
      "json_format": 1
  },
  "system_info": {
      "os": "linux",
      "cpus": 16,
      "go_version": "go1.21.6",
      "hostname": "REDACTED"
  },
  "config": {
      "local_address": "REDACTED",
      "remote_address": "REDACTED",
      "open_timeouts": "1s,2s,4s,8s",
      "params": {
          "proto_version": 1,
          "duration": 5000000000,
          "interval": 1000000000,
          "length": 60,
          "received_stats": "both",
          "stamp_at": "both",
          "clock": "both",
          "dscp": 0,
          "server_fill": ""
      },
      "loose": false,
      "ip_version": "IPv4",
      "df": 0,
      "ttl": 0,
      "timer": "comp",
      "time_source": "go",
      "waiter": "3x4s",
      "filler": "none",
      "fill_one": false,
      "server_fill": "",
      "thread_lock": false,
      "supplied": {
          "local_address": "REDACTED",
          "remote_address": "REDACTED",
          "open_timeouts": "1s,2s,4s,8s",
          "params": {
              "proto_version": 1,
              "duration": 5000000000,
              "interval": 1000000000,
              "length": 0,
              "received_stats": "both",
              "stamp_at": "both",
              "clock": "both",
              "dscp": 0,
              "server_fill": ""
          },
          "loose": false,
          "ip_version": "IPv4",
          "df": 0,
          "ttl": 0,
          "timer": "comp",
          "time_source": "go",
          "waiter": "3x4s",
          "filler": "none",
          "fill_one": false,
          "server_fill": "",
          "thread_lock": false
      }
  },
  "stats": {
      "start_time": {
          "wall": 1707277440772833268,
          "monotonic": 22210666
      },
      "send_call": {
          "total": 127256,
          "n": 5,
          "min": 12052,
          "max": 30262,
          "mean": 25451,
          "stddev": 7639,
          "variance": 58362885
      },
      "timer_error": {
          "total": 1299408,
          "n": 4,
          "min": 42505,
          "max": 643010,
          "mean": 324852,
          "stddev": 265465,
          "variance": 70472098752
      },
      "rtt": {
          "total": 83084018,
          "n": 5,
          "min": 16064572,
          "max": 17291970,
          "mean": 16616803,
          "median": 16597560,
          "stddev": 488290,
          "variance": 238427848599
      },
      "send_delay": {
          "total": 52436439042,
          "n": 5,
          "min": 10486437967,
          "max": 10488213200,
          "mean": 10487287808,
          "median": 10487235754,
          "stddev": 703446,
          "variance": 494837607693
      },
      "receive_delay": {
          "total": -52353355157,
          "n": 5,
          "min": -10470976733,
          "max": -10470232546,
          "mean": -10470671031,
          "median": -10470851192,
          "stddev": 342554,
          "variance": 117343485897
      },
      "server_packets_received": 5,
      "bytes_sent": 300,
      "bytes_received": 300,
      "duplicates": 0,
      "late_packets": 0,
      "wait": 51875910,
      "duration": 4053373029,
      "packets_sent": 5,
      "packets_received": 5,
      "packet_loss_percent": 0,
      "upstream_loss_percent": 0,
      "downstream_loss_percent": 0,
      "duplicate_percent": 0,
      "late_packets_percent": 0,
      "ipdv_send": {
          "total": 2978734,
          "n": 4,
          "min": 405684,
          "max": 1284073,
          "mean": 744683,
          "median": 644488,
          "stddev": 397052,
          "variance": 157650351613
      },
      "ipdv_receive": {
          "total": 1895362,
          "n": 4,
          "min": 70066,
          "max": 744191,
          "mean": 473840,
          "median": 540552,
          "stddev": 290347,
          "variance": 84301497643
      },
      "ipdv_round_trip": {
          "total": 1760386,
          "n": 4,
          "min": 194481,
          "max": 806291,
          "mean": 440096,
          "median": 379807,
          "stddev": 261474,
          "variance": 68368804430
      },
      "server_processing_time": {
          "total": 17180,
          "n": 5,
          "min": 1780,
          "max": 4380,
          "mean": 3436,
          "stddev": 987,
          "variance": 976030
      },
      "timer_err_percent": 0.0324852,
      "timer_misses": 0,
      "timer_miss_percent": 0,
      "send_rate": {
          "bps": 599,
          "string": "599 bps"
      },
      "receive_rate": {
          "bps": 600,
          "string": "600 bps"
      }
  },
  "round_trips": [
      {
          "seqno": 0,
          "lost": "false",
          "timestamps": {
              "client": {
                  "receive": {
                      "wall": 1707277440790127432,
                      "monotonic": 39504855
                  },
                  "send": {
                      "wall": 1707277440772833721,
                      "monotonic": 22211105
                  }
              },
              "server": {
                  "receive": {
                      "wall": 1707277451261046921,
                      "monotonic": 8380840759811810
                  },
                  "send": {
                      "wall": 1707277451261048701,
                      "monotonic": 8380840759813590
                  }
              },
              "Ecn": 0
          },
          "delay": {
              "receive": -10470921269,
              "rtt": 17291970,
              "send": 10488213200
          },
          "ipdv": {}
      },
      {
          "seqno": 1,
          "lost": "false",
          "timestamps": {
              "client": {
                  "receive": {
                      "wall": 1707277441790353996,
                      "monotonic": 1039731408
                  },
                  "send": {
                      "wall": 1707277441773479264,
                      "monotonic": 1022856655
                  }
              },
              "server": {
                  "receive": {
                      "wall": 1707277452261201298,
                      "monotonic": 8380841759966187
                  },
                  "send": {
                      "wall": 1707277452261205188,
                      "monotonic": 8380841759970077
                  }
              },
              "Ecn": 0
          },
          "delay": {
              "receive": -10470851192,
              "rtt": 16870863,
              "send": 10487722034
          },
          "ipdv": {
              "receive": 70066,
              "rtt": -421107,
              "send": -491173
          }
      },
      {
          "seqno": 2,
          "lost": "false",
          "timestamps": {
              "client": {
                  "receive": {
                      "wall": 1707277442788720025,
                      "monotonic": 2038097444
                  },
                  "send": {
                      "wall": 1707277442772652035,
                      "monotonic": 2022029432
                  }
              },
              "server": {
                  "receive": {
                      "wall": 1707277453259090002,
                      "monotonic": 8380842757854891
                  },
                  "send": {
                      "wall": 1707277453259093442,
                      "monotonic": 8380842757858331
                  }
              },
              "Ecn": 0
          },
          "delay": {
              "receive": -10470373417,
              "rtt": 16064572,
              "send": 10486437967
          },
          "ipdv": {
              "receive": 477782,
              "rtt": -806291,
              "send": -1284073
          }
      },
      {
          "seqno": 3,
          "lost": "false",
          "timestamps": {
              "client": {
                  "receive": {
                      "wall": 1707277443789142691,
                      "monotonic": 3038520113
                  },
                  "send": {
                      "wall": 1707277443772879290,
                      "monotonic": 3022256680
                  }
              },
              "server": {
                  "receive": {
                      "wall": 1707277454260115044,
                      "monotonic": 8380843758879943
                  },
                  "send": {
                      "wall": 1707277454260119424,
                      "monotonic": 8380843758884323
                  }
              },
              "Ecn": 0
          },
          "delay": {
              "receive": -10470976733,
              "rtt": 16259053,
              "send": 10487235754
          },
          "ipdv": {
              "receive": -603323,
              "rtt": 194481,
              "send": 797804
          }
      },
      {
          "seqno": 4,
          "lost": "false",
          "timestamps": {
              "client": {
                  "receive": {
                      "wall": 1707277444789867766,
                      "monotonic": 4039245182
                  },
                  "send": {
                      "wall": 1707277444773266535,
                      "monotonic": 4022643932
                  }
              },
              "server": {
                  "receive": {
                      "wall": 1707277455260096622,
                      "monotonic": 8380844758861511
                  },
                  "send": {
                      "wall": 1707277455260100312,
                      "monotonic": 8380844758865201
                  }
              },
              "Ecn": 0
          },
          "delay": {
              "receive": -10470232546,
              "rtt": 16597560,
              "send": 10486830087
          },
          "ipdv": {
              "receive": 744191,
              "rtt": 338507,
              "send": -405684
          }
      }
  ]
}

Also see IRTT-CLIENT (1) for details.

Note that the One-Way-Delay (OWD) calculation is affected by the clock synchronization between the client and server. We set up NTP on both the Starlink client and the server with NTP pool servers. However, we can only provide best-effort attempts and some OWD values might not be accurate and may contain negative values.

Ping Example
[1700182800.410606] 64 bytes from 2605:59c8:1000:962f::1: icmp_seq=1 ttl=63 time=60.6 ms
[1700182800.421290] 64 bytes from 2605:59c8:1000:962f::1: icmp_seq=2 ttl=63 time=56.9 ms
[1700182800.442474] 64 bytes from 2605:59c8:1000:962f::1: icmp_seq=3 ttl=63 time=62.0 ms
[1700182800.465254] 64 bytes from 2605:59c8:1000:962f::1: icmp_seq=4 ttl=63 time=68.8 ms
[1700182800.475936] 64 bytes from 2605:59c8:1000:962f::1: icmp_seq=5 ttl=63 time=65.1 ms

Processed CSV dataset

Processed CSV dataset only contains timestamps and necessary latency metrics.

IRTT

For IRTT metrics, an example of the processed *.csv is shown below.

IRTT CSV Example
timestamp,rtt,uplink,downlink
1705744800616897349,0,0,-1
1705744800626565141,120.126123,72.439368,47.68675
1705744800636737402,109.976237,62.295097,47.681199
1705744800646307744,100.411714,52.731855,47.679937
1705744800656691526,90.032887,42.357473,47.67541
1705744800666731717,0,0,-1
1705744800676416449,0,0,-1
1705744800686681812,97.297734,49.362602,47.935125
1705744800696496401,87.506136,39.592273,47.913945

Note, for rtt, uplink, downlink, a value of -1 represents packet loss.

Per IRTT documentation,

lost the lost status of the packet, which can be one of false, true, true_down or true_up. The true_down and true_up values are only possible if the ReceivedStats parameter includes ReceivedStatsWindow (irtt client --stats flag). Even then, if it could not be determined whether the packet was lost upstream or downstream, the value true is used.

When converting from *.json to *.csv, we assign -1 to rtt and 0 to others, when the lost status is true; assign -1 to uplink and 0 to others, when the lost status is true_up; assign -1 to downlink and 0 to others, when the lost status is true_down;

Ping

For Ping metrics, an example of the processed *.csv is shown below.

Ping CSV Example
timestamp,rtt
1705744800.533641,91.8
1705744800.55492,96.5
1705744800.602846,111.0
1705744800.61361,106.0
1705744800.613665,88.3
1705744800.677437,106.0

License

This repository is licensed under GPL-3.0.

The dataset files on Zenodo are released under CC BY-SA 4.0.

Citation

If you use this dataset in your research, please cite the following paper:

@inproceedings{10.1145/3625468.3652170,
author = {Zhao, Jinwei and Pan, Jianping},
title = {LENS: A LEO Satellite Network Measurement Dataset},
year = {2024},
isbn = {9798400704123},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3625468.3652170},
doi = {10.1145/3625468.3652170},
booktitle = {Proceedings of the 15th ACM Multimedia Systems Conference},
pages = {278–284},
numpages = {7},
keywords = {Dataset, Inter-Satellite Links, LEO, Latency, Network Measurement},
location = {Bari, Italy},
series = {MMSys '24}
}

Acknowledgment

This work is not possible without our alumni and their students who hosted our Starlink dishes, and other researchers and Starlink users on /r/Starlink and /r/StarlinkEngineering who generously allowed us to access their dishes remotely.