forked from nasa-lambda/cmbpol_plotting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_BB_bounds.pro
238 lines (152 loc) · 5.99 KB
/
plot_BB_bounds.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
pro plot_bb_bounds
; Makes a B-mode power spectrum plot showing 95% confidence upper limits
; for B-mode power from different experiments. Data from ACTPol, BICEP1,
; BOOMERanG, CAPMAP, CBI, DASI, MAXIPOL, QUaD, QUIET-Q, QUIET-W, and WMAP
; are included.
; For comparison, theoretical curves for a LCDM model with tensor-to-scalar
; ratio r=0.1 and r=0.01 are also plotted as solid curves. The inflationary
; and gravitational lensing components are plotted separately as dashed
; and dotted curves, respectively.
; The data are plotted to a postscript file BB_bounds.ps.
; The experimental data are read from a file BB_data_2015nov_csv_format.dat,
; which should be copied to the user's local directory.
; Sources for the data and more information are given in
; http://lambda.gsfc.nasa.gov/graphics/bb_upperlimits/
; For the QUIET-W results, the larger of the upper limits from the two
; pipelines is plotted for each l-bin.
; The theoretical data are read from files made by the BICEP2 team,
; from their calculations using the March 2013 version of CAMB.
; They should be copied to the user's local directory from
; http://lambda.gsfc.nasa.gov/data/suborbital/BICEP2/B2_3yr_camb_planck_lensed_uK_20140314.txt
; http://lambda.gsfc.nasa.gov/data/suborbital/BICEP2/B2_3yr_camb_planck_withB_uK_20140314.txt
; This code calls readcol.pro and associated routines from the IDL
; Astronomy User's Library, http://idlastro.gsfc.nasa.gov/
set_plot,'ps'
device,filename='BB_bounds.ps',/color,bits=8
!p.thick=4
!p.charthick=4
!x.thick=4
!y.thick=4
; read and plot 95% confidence upper limits
readcol,'BB_data_2015nov_csv_format.dat',expt,l_min,l_center,l_max,BB,sigma_BB_minus,$
sigma_bb_plus,bb_limit,format='A,I,F,I,F,F,F,F',/preserve_null,delimiter=',',skipline=39
for i=0,n_elements(expt)-1 do expt(i)=strtrim(expt(i))
unique_list,expt,expt_uniq,expt_index
n_uniq = n_elements(expt_uniq) ; number of experiments with upper limit data
; set up arrays of IDL color tables and colors to
; use for the different experiments
ctables=[27,12,22,12,4,12,4,12,10,12,12]
colors=[130,20,90,100,240,70,131,120,210,150,200]
delta_y = (.96-.5)/n_uniq ; separation in y for xyouts
plot_oo,[1.,1.e+4],[1.e-2,1.e+3],ps=3,xtitle='Multipole !8l!3',$
ytitle='!8l!3(!8l!3+1)C!d!8l!3!u!8BB!n/!32!4p !3[!4l!3K!u2!n]',$
yr=[1.e-4,1.e+3],ys=1,/nodata
for i=0,n_uniq-1 do begin
sel = where(expt eq expt_uniq(i))
loadct,ctables(i)
oplot_bb,l_min(sel),l_max(sel),bb_limit(sel),color=colors(i)
alt_xyouts,.05,.95-i*delta_y,expt_uniq(i),charsize=0.8,color=colors(i),/log
endfor
; oplot lambda CDM predictions
; read BICEP2 team results for r=0.1
readcol,'B2_3yr_camb_planck_lensed_uK_20140314.txt',l_p1_lens,c_BB_p1_lens,format='I,X,X,X,F',skipline=14
readcol,'B2_3yr_camb_planck_withB_uK_20140314.txt',l_p1_inflation,c_BB_p1_inflation,format='I,X,X,X,F',skipline=14
; get theoretical spectrum for r=0.1, call it c_bb_p1
; start with lensing component
c_bb_p1=c_BB_p1_lens
; add inflationary component
s=indgen(n_elements(l_p1_inflation))
c_bb_p1(s)=c_bb_p1(s)+c_BB_p1_inflation
; get theoretical spectrum for r=0.01
c_bb_p01_from_bicep2=c_BB_p1_lens
s=indgen(n_elements(l_p1_inflation))
c_bb_p01_from_bicep2(s)=c_bb_p01_from_bicep2(s)+0.1*c_BB_p1_inflation
loadct,0
oplot,l_p1_lens,c_bb_p1 ; theor. curve for r=0.1
oplot,l_p1_inflation,c_BB_p1_inflation,linestyle=2 ; inflationary component, r=0.1
oplot,l_p1_lens,c_bb_p01_from_bicep2 ; theor. curve for r=0.01
oplot,l_p1_inflation,0.1*c_BB_p1_inflation,linestyle=2 ; inflationary component, r=0.01
oplot,l_p1_lens,c_BB_p1_lens,linestyle=1 ; lensing component
xyouts,3.,1.5*c_BB_p1_inflation(2),'r=0.1',charsize=0.8
xyouts,3.,1.5*c_bb_p01_from_bicep2(2),'r=0.01',charsize=0.8
device,/close
set_plot,'x'
!p.thick=1
!p.charthick=1
!x.thick=1
!y.thick=1
loadct,0
end
pro oplot_bb,lmin,lmax,bb,color=color
np=n_elements(lmin)
for i=0,np-1 do begin
oplot,[lmin(i),lmax(i)],[bb(i),bb(i)],ps=0,color=color
endfor
end
;--------------------------------------------------------------------
; Procedure unique_list
;
; IDL procedure to convert a sorted array of elements into a sorted
; array of unique elements and return the index range of each unique
; element within the original array. This is useful when grouping
; pixel observations for averaging.
;
; Writen By: BA Franz
;
; Inputs:
; inlist - input array of elements (must be sorted)
;
; Outputs:
; outlist - output array of unique elements of inlist
; index - a 2xN_Unique array containing the index of the 1st and
; last occurance of each element of outlist within inlist.
;
;--------------------------------------------------------------------
;
pro unique_list,inlist,outlist,index
nobs = n_elements(inlist)
index = lonarr(2,nobs)
outlist = inlist
i1 = 0L
count = 0L
for i = 1L,nobs-1 do begin
if (inlist(i) ne inlist(i1)) then begin
outlist(count) = inlist(i1)
index(0:1,count) = [i1,i-1]
count = count+1
i1 = i
endif
endfor
index(0:1,count) = [i1,nobs-1]
outlist(count) = inlist(i1)
outlist = outlist(0:count)
index = index(0:1,0:count)
return
end
pro xerr,x,y,sigx,color=color
; oplots error bars in x
!psym=0
np=n_elements(y)
xmin=x-sigx
xmax=x+sigx
for i=0,np-1 do begin
oplot,[xmin(i),xmax(i)],[y(i),y(i)],color=color
endfor
end
pro alt_xyouts,xfrac,yfrac,str,charsize=charsize,color=color,log=log
; alternative to IDL's xyouts procedure
; inputs
; xfrac - print the string starting at this fraction of plot range in x
; yfrac - y
; str - string to print
; log - set this keyword if plot to be annotated is log-log
if (not keyword_set(log)) then begin
xyouts,!x.crange(0) + xfrac*(!x.crange(1)-!x.crange(0)),$
!y.crange(0) + yfrac*(!y.crange(1)-!y.crange(0)),$
str,charsize=charsize,color=color
endif else begin
xyouts,10^(!x.crange(0) + xfrac*(!x.crange(1)-!x.crange(0))),$
10^(!y.crange(0) + yfrac*(!y.crange(1)-!y.crange(0))),$
str,charsize=charsize,color=color
endelse
end