-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
242 lines (204 loc) · 6.95 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""
Definition of the MdVRNet model
Copyright (C) 2019, Matias Tassano <matias.tassano@parisdescartes.fr>
This program is free software: you can use, modify and/or
redistribute it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later
version. You should have received a copy of this license along
this program. If not, see <http://www.gnu.org/licenses/>.
"""
import torch
import torch.nn as nn
from estimate_params import DPEN
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=True),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=True),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class ResBlock(nn.Module):
def __init__(self, ch):
super(ResBlock, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(ch, ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(ch),
nn.ReLU(inplace=True),
nn.Conv2d(ch, ch, kernel_size=3, padding=1, bias=False)
)
def forward(self, x):
return x + self.net(x)
class FullResBranch(nn.Module):
def __init__(self, in_ch, out_ch, int_ch=64):
super(FullResBranch, self).__init__()
self.net = nn.Sequential(
nn.Conv2d(in_ch, int_ch, kernel_size=3, padding=1, bias=False),
ResBlock(int_ch),
ResBlock(int_ch),
ResBlock(int_ch),
nn.Conv2d(int_ch, out_ch, kernel_size=3, padding=1, bias=False)
)
def forward(self, x):
return self.net(x)
class CvBlock(nn.Module):
'''(Conv2d => BN => ReLU) x 2'''
def __init__(self, in_ch, out_ch):
super(CvBlock, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.convblock(x)
class InputCvBlock(nn.Module):
'''(Conv with num_in_frames groups => BN => ReLU) + (Conv => BN => ReLU)'''
def __init__(self, num_in_frames, out_ch):
super(InputCvBlock, self).__init__()
self.interm_ch = 30
self.convblock = nn.Sequential(
nn.Conv2d(num_in_frames*(3 + 2), num_in_frames*self.interm_ch, kernel_size=3, padding=1, groups=num_in_frames, bias=False),
nn.BatchNorm2d(num_in_frames*self.interm_ch),
nn.ReLU(inplace=True),
nn.Conv2d(num_in_frames*self.interm_ch, out_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.convblock(x)
class DownBlock(nn.Module):
'''Downscale + (Conv2d => BN => ReLU)*2'''
def __init__(self, in_ch, out_ch):
super(DownBlock, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, stride=2, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
CvBlock(out_ch, out_ch)
)
def forward(self, x):
return self.convblock(x)
class UpBlock(nn.Module):
'''(Conv2d => BN => ReLU)*2 + Upscale'''
def __init__(self, in_ch, out_ch):
super(UpBlock, self).__init__()
self.convblock = nn.Sequential(
CvBlock(in_ch, in_ch),
nn.Conv2d(in_ch, out_ch*4, kernel_size=3, padding=1, bias=False),
nn.PixelShuffle(2)
)
def forward(self, x):
return self.convblock(x)
class OutputCvBlock(nn.Module):
'''Conv2d => BN => ReLU => Conv2d'''
def __init__(self, in_ch, out_ch):
super(OutputCvBlock, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(in_ch),
nn.ReLU(inplace=True),
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False)
)
def forward(self, x):
return self.convblock(x)
class MRB(nn.Module):
""" Definition of the MRB of MdVRNet.
Inputs of constructor:
num_input_frames: int. number of input frames
Inputs of forward():
xn: input frames of dim [N, C, H, W], (C=3 RGB)
noise_map: array with noise map of dim [N, 1, H, W]
"""
def __init__(self, num_input_frames=3):
super(MRB, self).__init__()
self.chs_lyr0 = 32
self.chs_lyr1 = 64
self.chs_lyr2 = 128
# preprocessing layer
self.inc = InputCvBlock(num_in_frames=num_input_frames, out_ch=self.chs_lyr0)
# low resolution branch
self.downc0 = DownBlock(in_ch=self.chs_lyr0, out_ch=self.chs_lyr1)
self.downc1 = DownBlock(in_ch=self.chs_lyr1, out_ch=self.chs_lyr2)
self.upc2 = UpBlock(in_ch=self.chs_lyr2, out_ch=self.chs_lyr1)
self.upc1 = UpBlock(in_ch=self.chs_lyr1, out_ch=self.chs_lyr0)
self.outc = OutputCvBlock(in_ch=self.chs_lyr0 * 2, out_ch=3)
# full resolution branch
self.resnet = FullResBranch(in_ch=self.chs_lyr0, out_ch=self.chs_lyr0)
# attention layer
self.se = SELayer(channel=self.chs_lyr0 * 2, reduction=8)
self.reset_params()
@staticmethod
def weight_init(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, nonlinearity='relu')
def reset_params(self):
for _, m in enumerate(self.modules()):
self.weight_init(m)
def forward(self, in0, in1, in2, noise_map):
'''Args:
inX: Tensor, [N, C, H, W] in the [0., 1.] range
noise_map: Tensor [N, 1, H, W] in the [0., 1.] range
'''
# Input convolution block
x0 = self.inc(torch.cat((in0, noise_map, in1, noise_map, in2, noise_map), dim=1))
res_out = self.resnet(x0)
# Downsampling
x1 = self.downc0(x0)
x2 = self.downc1(x1)
x2 = self.upc2(x2)
x1 = self.upc1(x1+x2)
# Estimation
cat = torch.cat(((x0 + x1), res_out), dim=1)
x = self.outc(self.se(cat))
# Residual
x = in1 - x
return x
class MdVRNet(nn.Module):
""" Definition of the MdVRNet model.
Inputs of forward():
xn: input frames of dim [N, C, H, W], (C=3 RGB)
noise_map: array with noise map of dim [N, 1, H, W]
"""
def __init__(self, num_input_frames=5):
super(MdVRNet, self).__init__()
self.num_input_frames = num_input_frames
# Define models of each stage
self.temp1 = MRB(num_input_frames=3)
self.temp2 = MRB(num_input_frames=3)
self.estimate_sigma_1 = DPEN() # IGNORE THIS LINE
self.estimate_sigma_2 = DPEN() # IGNORE THIS LINE
# Init weights
self.reset_params()
@staticmethod
def weight_init(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, nonlinearity='relu')
def reset_params(self):
for _, m in enumerate(self.modules()):
self.weight_init(m)
def forward(self, x, noise_map):
'''Args:
x: Tensor, [N, num_frames*C, H, W] in the [0., 1.] range
noise_map: Tensor [N, 1, H, W] in the [0., 1.] range
'''
# Unpack inputs
(x0, x1, x2, x3, x4) = tuple(x[:, 3*m:3*m+3, :, :] for m in range(self.num_input_frames))
# First stage
x20 = self.temp1(x0, x1, x2, noise_map)
x21 = self.temp1(x1, x2, x3, noise_map)
x22 = self.temp1(x2, x3, x4, noise_map)
#Second stage
x = self.temp2(x20, x21, x22, noise_map)
return x