-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_common.py
254 lines (233 loc) · 9.64 KB
/
train_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""
Different common functions for training the models.
Copyright (C) 2019, Matias Tassano <matias.tassano@parisdescartes.fr>
This program is free software: you can use, modify and/or
redistribute it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later
version. You should have received a copy of this license along
this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import time
import torch
import numpy as np
import torchvision.utils as tutils
from utils import batch_psnr, batch_ssim, apply_jpeg_artifacts
from mdvrnet import denoise_decompress_seq_mdvrnet
def resume_training(argdict, model, optimizer):
""" Resumes previous training or starts anew
"""
if argdict['resume_training']:
resumef = os.path.join(argdict['log_dir'], 'ckpt.pth')
if os.path.isfile(resumef):
checkpoint = torch.load(resumef)
print("> Resuming previous training")
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
new_epoch = argdict['epochs']
new_milestone = argdict['milestone']
current_lr = argdict['lr']
argdict = checkpoint['args']
training_params = checkpoint['training_params']
start_epoch = training_params['start_epoch']
argdict['epochs'] = new_epoch
argdict['milestone'] = new_milestone
argdict['lr'] = current_lr
print("=> loaded checkpoint '{}' (epoch {})"\
.format(resumef, start_epoch))
print("=> loaded parameters :")
print("==> checkpoint['optimizer']['param_groups']")
print("\t{}".format(checkpoint['optimizer']['param_groups']))
print("==> checkpoint['training_params']")
for k in checkpoint['training_params']:
print("\t{}, {}".format(k, checkpoint['training_params'][k]))
argpri = checkpoint['args']
print("==> checkpoint['args']")
for k in argpri:
print("\t{}, {}".format(k, argpri[k]))
argdict['resume_training'] = False
else:
raise Exception("Couldn't resume training with checkpoint {}".\
format(resumef))
else:
start_epoch = 0
training_params = {}
training_params['step'] = 0
training_params['current_lr'] = 0
training_params['no_orthog'] = argdict['no_orthog']
return start_epoch, training_params
def lr_scheduler(epoch, argdict):
"""Returns the learning rate value depending on the actual epoch number
By default, the training starts with a learning rate equal to 1e-3 (--lr).
After the number of epochs surpasses the first milestone (--milestone), the
lr gets divided by 100. Up until this point, the orthogonalization technique
is performed (--no_orthog to set it off).
"""
# Learning rate value scheduling according to argdict['milestone']
reset_orthog = False
if epoch > argdict['milestone'][1]:
current_lr = argdict['lr'] / 1000.
reset_orthog = True
elif epoch > argdict['milestone'][0]:
current_lr = argdict['lr'] / 10.
else:
current_lr = argdict['lr']
return current_lr, reset_orthog
def log_train_psnr(result, imsource, loss, writer, epoch, idx, num_minibatches, training_params):
'''Logs trai loss.
'''
#Compute pnsr of the whole batch
psnr_train = batch_psnr(torch.clamp(result, 0., 1.), imsource, 1.)
ssim_train = batch_ssim(torch.clamp(result, 0., 1.), imsource, 1.)
# Log the scalar values
writer.add_scalar('loss', loss.item(), training_params['step'])
# writer.add_scalar('PSNR on training data', psnr_train, \
# training_params['step'])
print("[epoch {}][{}/{}] loss: {:1.4f} PSNR_train: {:1.4f} SSIM_train: {:1.4f}".\
format(epoch+1, idx+1, num_minibatches, loss.item(), psnr_train, ssim_train))
return psnr_train
def save_model_checkpoint(model, argdict, optimizer, train_pars, epoch, is_best=False):
"""Stores the model parameters under 'argdict['log_dir'] + '/net.pth'
Also saves a checkpoint under 'argdict['log_dir'] + '/ckpt.pth'
"""
torch.save(model.state_dict(), os.path.join(argdict['log_dir'], 'net.pth'))
save_dict = { \
'state_dict': model.state_dict(), \
'optimizer' : optimizer.state_dict(), \
'training_params': train_pars, \
'args': argdict\
}
torch.save(save_dict, os.path.join(argdict['log_dir'], 'ckpt.pth'))
if is_best:
print('Saving new best model...')
torch.save(model.state_dict(), os.path.join(argdict['log_dir'], 'best_net.pth'))
save_dict = { \
'state_dict': model.state_dict(), \
'optimizer' : optimizer.state_dict(), \
'training_params': train_pars, \
'args': argdict\
}
torch.save(save_dict, os.path.join(argdict['log_dir'], 'best_ckpt.pth'))
if epoch % argdict['save_every_epochs'] == 0:
torch.save(save_dict, os.path.join(argdict['log_dir'], 'ckpt_e{}.pth'.format(epoch+1)))
del save_dict
def validate_and_log(model_temp, dataset_val, valnoisestd, temp_psz, writer, \
epoch, lr, logger, trainimg):
"""Validation step after the epoch finished
"""
t1 = time.time()
psnr_val = 0
ssim_val = 0
with torch.no_grad():
for seq_val in dataset_val:
noise = torch.FloatTensor(seq_val.size()).normal_(mean=0, std=valnoisestd)
seqn_val = seq_val + noise
seqn_val = seqn_val.cuda()
sigma_noise = torch.cuda.FloatTensor([valnoisestd])
out_val = denoise_seq_fastdvdnet(seq=seqn_val, \
noise_std=sigma_noise, \
temp_psz=temp_psz,\
model_temporal=model_temp)
psnr_val += batch_psnr(out_val.cpu(), seq_val.squeeze_(), 1.)
ssim_val += batch_ssim(out_val.cpu(), seq_val.squeeze_(), 1.)
psnr_val /= len(dataset_val)
ssim_val /= len(dataset_val)
t2 = time.time()
print("\n[epoch %d] PSNR_val: %.4f, SSIM_val: %.4f on %.2f sec" % (epoch+1, psnr_val, ssim_val, (t2-t1)))
writer.add_scalar('PSNR on validation data', psnr_val, epoch)
writer.add_scalar('Learning rate', lr, epoch)
# Log val images
try:
idx = 0
if epoch == 0:
# Log training images
_, _, Ht, Wt = trainimg.size()
img = tutils.make_grid(trainimg.view(-1, 3, Ht, Wt), \
nrow=8, normalize=True, scale_each=True)
writer.add_image('Training patches', img, epoch)
# Log validation images
img = tutils.make_grid(seq_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
imgn = tutils.make_grid(seqn_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
writer.add_image('Clean validation image {}'.format(idx), img, epoch)
writer.add_image('Noisy validation image {}'.format(idx), imgn, epoch)
# Log validation results
irecon = tutils.make_grid(out_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
writer.add_image('Reconstructed validation image {}'.format(idx), irecon, epoch)
except Exception as e:
logger.error("validate_and_log_temporal(): Couldn't log results, {}".format(e))
def validate_and_log_noise_compression(model_temp, dataset_val, valnoisestd, valq, temp_psz, writer, \
epoch, lr, logger, trainimg, dpen_model, dpen_patch):
"""Validation step after the epoch finished
"""
t1 = time.time()
psnr_val = 0
ssim_val = 0
with torch.no_grad():
for seq_val in dataset_val:
std = np.random.uniform(valnoisestd[0], valnoisestd[1])
noise = torch.FloatTensor(seq_val.size()).normal_(mean=0, std=std)
seqn_val = seq_val.clone().detach()
seqn_val = seqn_val + noise
seqn_val = torch.clamp(seqn_val, 0., 1.)
q = np.random.randint(valq[0], valq[1] + 1)
for frame in range(0, seqn_val.shape[0]):
seqn_val[frame, :, :, :] = apply_jpeg_artifacts(seqn_val[frame, :, :, :], q=q)
seqn_val = torch.clamp(seqn_val, 0., 1.)
seqn_val = seqn_val.cuda()
noisestd = []
q = []
for i in range(len(seqn_val)):
frame = seqn_val[i].cpu()
value_sigma = []
value_q = []
_, H, W = frame.shape
for h in range((H % dpen_patch) // 2, H - dpen_patch, dpen_patch):
for w in range((H % dpen_patch) // 2, W - dpen_patch, dpen_patch):
patch = frame[:, h:h + dpen_patch, w:w + dpen_patch]
estimated_noisestd, estimated_q = dpen_model(patch.unsqueeze(0).cuda())
value_sigma.append(float(estimated_noisestd[0]))
value_q.append(float(estimated_q[0]))
value_sigma = np.mean(value_sigma)
value_q = np.mean(value_q)
noisestd.append(value_sigma)
q.append(value_q)
out_val = denoise_decompress_seq_mdvrnet(seq=seqn_val, \
noise_std=noisestd, \
temp_psz=temp_psz,\
model_temporal=model_temp,\
q=q)
psnr_val += batch_psnr(out_val.cpu(), seq_val.squeeze_(), 1.)
ssim_val += batch_ssim(out_val.cpu(), seq_val.squeeze_(), 1.)
psnr_val /= len(dataset_val)
ssim_val /= len(dataset_val)
t2 = time.time()
print("\n[epoch %d] PSNR_val: %.4f, SSIM_val: %.4f on %.2f sec" % (epoch+1, psnr_val, ssim_val, (t2-t1)))
writer.add_scalar('PSNR on validation data', psnr_val, epoch)
writer.add_scalar('Learning rate', lr, epoch)
# Log val images
try:
idx = 0
if epoch == 0:
# Log training images
_, _, Ht, Wt = trainimg.size()
img = tutils.make_grid(trainimg.view(-1, 3, Ht, Wt), \
nrow=8, normalize=True, scale_each=True)
writer.add_image('Training patches', img, epoch)
# Log validation images
img = tutils.make_grid(seq_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
imgn = tutils.make_grid(seqn_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
writer.add_image('Clean validation image {}'.format(idx), img, epoch)
writer.add_image('Noisy validation image {}'.format(idx), imgn, epoch)
# Log validation results
irecon = tutils.make_grid(out_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
writer.add_image('Reconstructed validation image {}'.format(idx), irecon, epoch)
except Exception as e:
logger.error("validate_and_log_temporal(): Couldn't log results, {}".format(e))
return psnr_val