-
Notifications
You must be signed in to change notification settings - Fork 0
/
regional_variants.py
299 lines (224 loc) · 10.3 KB
/
regional_variants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#!/usr/bin/env python3
# Treeseq files from:
# https://zenodo.org/record/5495535
import sys
import os
import subprocess
import shutil
import collections
import argparse
import json
import sqlite3
import numpy
import tskit
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
plt.rcParams['svg.fonttype'] = 'none'
import populations
def download(url_template, download_folder, tsz):
sys.stderr.write(f'Downloading {tsz}...\n')
url = url_template.format(treeseq_file=treeseq_file)
dst = os.path.join(download_folder, tsz)
subprocess.run(['wget', '-O', dst, url])
def extract(download_folder, extraction_folder, tsz):
sys.stderr.write(f'Extracting {tsz}...\n')
download = os.path.join(download_folder, tsz)
if download_folder != extraction_folder:
# tsunzip only extracts to the folder that the treeseq file is in,
# so if we want it somewhere else we have to copy.
tsz_path = os.path.join(extraction_folder, tsz)
shutil.copy(download, tsz_path)
# No -k means the .tsz file goes away and we don't have to delete
# it later.
subprocess.run(['tsunzip', '-v', tsz_path])
else:
subprocess.run(['tsunzip', '-v', '-k', download])
def delete(download_folder, extraction_folder, tsz, treeseq_file):
treeseq_path = os.path.join(extraction_folder, treeseq_file)
if os.path.exists(treeseq_path):
sys.stderr.write(f'Deleting {treeseq_path}...\n')
os.remove(treeseq_path)
def init(database_path):
sys.stderr.write(f'Initializing {database_path}...\n')
if os.path.exists(database_path):
os.remove(database_path)
database = sqlite3.connect(database_path)
cursor = database.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS individual (
id INT PRIMARY KEY,
name TEXT,
region TEXT,
all_regions INTEGER,
some_regions INTEGER,
one_region INTEGER,
one_person INTEGER
);
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS num_regions (
name TEXT PRIMARY KEY,
number INTEGER
);
''')
for field in ['all_regions', 'some_regions', 'one_region', 'one_person']:
cursor.execute('INSERT INTO num_regions (name, number) VALUES (?, 0)', (field,))
database.commit()
database.close()
def fill(database_path, treeseq_file):
sys.stderr.write(f'Filling {database_path}...\n')
database = sqlite3.connect(database_path)
database.row_factory = sqlite3.Row
cursor = database.cursor()
num_regions = len(set(populations.regions.values()))
individual_regions = {}
sys.stderr.write(f'Loading {treeseq_file}\n')
sys.stderr.flush()
ts = tskit.load(treeseq_file)
individuals = {}
# We have names in ts which are guaranteed to be consistent,
# and IDs which aren't. However, the ts IDs should be faster
# to work with.
# So we'll use ts IDs from the first ts file we encounter for
# our SQL IDs. After that, the mapping may be arbitrary.
# We need to use names from each ts file to get a mapping
# from ts IDs to SQL IDs.
# So the mapping is ts ID -> SQL ID, and we get there via
# name.
# Individual names are all different, but population names
# duplicated between sources, so we use source+name to identify
# populations.
for individual in ts.individuals():
individual_metadata = json.loads(individual.metadata)
if 'sgdp_id' in individual_metadata:
source = 'SGDP'
individual_name = individual_metadata['sgdp_id']
elif 'sample' in individual_metadata:
source = 'HGDP'
individual_name = individual_metadata['sample']
elif 'individual_id' in individual_metadata:
source = 'TGP'
individual_name = individual_metadata['individual_id']
population = ts.population(ts.node(individual.nodes[0]).population)
population_metadata = json.loads(population.metadata)
population_name = population_metadata['name']
region = populations.regions[(source, population_name)]
individual_regions[individual.id] = region
individuals[individual_name] = {'id': individual.id, 'name': individual_name, 'region': region}
#cursor.execute('INSERT OR IGNORE INTO individual (id, name, region, all_regions, some_regions, one_region, one_person) VALUES (?, ?, ?, 0, 0, 0, 0)', (individual.id, individual_name, region))
cursor.execute('SELECT * FROM individual')
rows = cursor.fetchall()
if rows:
sql_ids = {individuals[row['name']]['id']: row['id'] for row in rows}
else:
sql_ids = {i['id']: i['id'] for i in individuals.values()}
entries = [(i['id'], i['name'], i['region']) for i in individuals.values()]
cursor.executemany('INSERT INTO individual (id, name, region, all_regions, some_regions, one_region, one_person) VALUES (?, ?, ?, 0, 0, 0, 0)', entries)
for vnum, variant in enumerate(ts.variants()):
if vnum % 1000 == 0:
sys.stderr.write(f'\rLoaded {vnum} ')
sys.stderr.flush()
for allele_index, allele in enumerate(variant.alleles):
# Skip ancestral states and missing data.
if allele_index == 0 or not allele:
continue
node_ids = numpy.where(variant.genotypes == allele_index)[0]
full_nodes = [ts.node(node) for node in node_ids]
individual_ids = set(node.individual for node in full_nodes)
if len(individual_ids) == 1:
column = 'one_person'
else:
region_count = len(set(individual_regions[id] for id in individual_ids))
if region_count == 1:
column = 'one_region'
elif region_count < num_regions:
column = 'some_regions'
else:
column = 'all_regions'
sql = f'UPDATE individual SET {column}={column}+1 WHERE id=?'
cursor.executemany(sql, [(sql_ids[id],) for id in individual_ids])
sql = f'UPDATE num_regions SET number=number+1 WHERE name=?'
cursor.execute(sql, (column,))
sys.stderr.write(f'\rLoaded {vnum} \n')
sys.stderr.flush()
sys.stderr.write(f'Done\n')
database.commit()
database.close()
fetch(database_path)
def fetch(database_path):
database = sqlite3.connect(database_path)
database.row_factory = sqlite3.Row
cursor = database.cursor()
cursor.execute('''
SELECT
region,
AVG(all_regions) AS "All regions",
AVG(some_regions) AS "Some regions",
AVG(one_region) AS "One region",
AVG(one_person) AS "One person"
FROM
individual
GROUP BY
region
ORDER BY
region
''')
fields = [d[0] for d in cursor.description[1:]]
rows = [row for row in cursor]
for row in rows:
print(row['region'])
for field in fields:
print(field, row[field])
return fields, rows
def draw(database_path, image_path):
sys.stderr.write(f'Drawing {database_path}...\n')
fields, rows = fetch(database_path)
regions = [row['region'].replace(' ', '\n') for row in rows]
bottoms = [0 for r in regions]
fig, ax = plt.subplots()
for field in fields:
values = [row[field] for row in rows]
ax.bar(regions, values, bottom=bottoms, label=field)
bottoms = [bottoms[i]+values[i] for i in range(len(values))]
database = sqlite3.connect(database_path)
cursor = database.cursor()
individual_count = list(cursor.execute('SELECT COUNT(*) FROM individual'))[0][0]
variant_count = list(cursor.execute('SELECT SUM(number) FROM num_regions'))[0][0]
plt.plot([], [], ' ', label=f'Based on {variant_count:,} genetic variants')
plt.plot([], [], ' ', label=f'from {individual_count:,} fully sequenced individuals')
ax.set_ylabel('Variant count')
#ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.0e'))
ax.yaxis.set_major_formatter(mtick.FuncFormatter(lambda value, position: f'{value:.0e}'.replace('+0', '')))
ax.set_title('''Variant counts in average individual from a given region
by worldwide distribution of genetic variant''')
ax.legend()
#'''based on 3,754 fully-sequenced individuals'''
plt.savefig(image_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('commands', nargs='+', choices=['all', 'init', 'download', 'extract', 'fill', 'delete', 'draw'], default='all')
parser.add_argument('--database-path', default='regional_variants.sqlite')
parser.add_argument('--image-path', default='regional_variants.svg')
parser.add_argument('--url-template', default='https://zenodo.org/record/5495535/files/{treeseq_file}.tsz?download=1')
parser.add_argument('--download-folder', default=os.getcwd())
parser.add_argument('--extraction-folder', default=os.getcwd())
parser.add_argument('--treeseq-template', default='hgdp_tgp_sgdp_chr{chromosome}.dated.trees')
parser.add_argument('--chromosomes', default='1_p,1_q,2_p,2_q,3_p,3_q,4_p,4_q,5_p,5_q,6_p,6_q,7_p,7_q,8_p,8_q,9_p,9_q,10_p,10_q,11_p,11_q,12_p,12_q,13_q,14_q,15_q,16_p,16_q,17_p,17_q,18_p,18_q,19_p,19_q,20_p,20_q,21_q,22_q')
args = parser.parse_args()
chromosomes = args.chromosomes.split(',')
if 'all' in args.commands or 'init' in args.commands:
init(args.database_path)
for chromosome in chromosomes:
treeseq_file = args.treeseq_template.format(chromosome=chromosome)
tsz = treeseq_file + '.tsz'
treeseq_path = os.path.join(args.extraction_folder, treeseq_file)
if 'all' in args.commands or 'download' in args.commands:
download(args.url_template, args.download_folder, tsz)
if 'all' in args.commands or 'extract' in args.commands:
extract(args.download_folder, args.extraction_folder, tsz)
if 'all' in args.commands or 'fill' in args.commands:
fill(args.database_path, treeseq_path)
if 'all' in args.commands or 'delete' in args.commands:
delete(args.download_folder, args.extraction_folder, tsz, treeseq_file)
if 'all' in args.commands or 'draw' in args.commands:
draw(args.database_path, args.image_path)