forked from NVIDIA/apex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
482 lines (429 loc) · 28.9 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import torch
from torch.utils import cpp_extension
from setuptools import setup, find_packages
import subprocess
import sys
import warnings
import os
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
diff --git a/setup.py b/setup.py
index 063b42d..9eabb49 100644
--- a/setup.py
+++ b/setup.py
@@ -91,6 +91,7 @@ def get_cuda_bare_metal_version(cuda_dir):
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
+ return
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
if not torch.cuda.is_available():
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
print('\nWarning: Torch did not find available GPUs on this system.\n',
'If your intention is to cross-compile, this is not an error.\n'
'By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n'
'Volta (compute capability 7.0), Turing (compute capability 7.5),\n'
'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n'
'If you wish to cross-compile for a single specific architecture,\n'
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n')
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if TORCH_MAJOR == 0 and TORCH_MINOR < 4:
raise RuntimeError("Apex requires Pytorch 0.4 or newer.\n" +
"The latest stable release can be obtained from https://pytorch.org/")
cmdclass = {}
ext_modules = []
extras = {}
if "--pyprof" in sys.argv:
string = "\n\nPyprof has been moved to its own dedicated repository and will " + \
"soon be removed from Apex. Please visit\n" + \
"https://github.com/NVIDIA/PyProf\n" + \
"for the latest version."
warnings.warn(string, DeprecationWarning)
with open('requirements.txt') as f:
required_packages = f.read().splitlines()
extras['pyprof'] = required_packages
try:
sys.argv.remove("--pyprof")
except:
pass
else:
warnings.warn("Option --pyprof not specified. Not installing PyProf dependencies!")
if "--cpp_ext" in sys.argv or "--cuda_ext" in sys.argv:
if TORCH_MAJOR == 0:
raise RuntimeError("--cpp_ext requires Pytorch 1.0 or later, "
"found torch.__version__ = {}".format(torch.__version__))
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if "--cpp_ext" in sys.argv:
from torch.utils.cpp_extension import CppExtension
sys.argv.remove("--cpp_ext")
ext_modules.append(
CppExtension('apex_C',
['csrc/flatten_unflatten.cpp',]))
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
raise RuntimeError("Cuda extensions are being compiled with a version of Cuda that does " +
"not match the version used to compile Pytorch binaries. " +
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) +
"In some cases, a minor-version mismatch will not cause later errors: " +
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
"You can try commenting out this check (at your own risk).")
# Set up macros for forward/backward compatibility hack around
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e
# and
# https://github.com/NVIDIA/apex/issues/456
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac
version_ge_1_1 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0):
version_ge_1_1 = ['-DVERSION_GE_1_1']
version_ge_1_3 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2):
version_ge_1_3 = ['-DVERSION_GE_1_3']
version_ge_1_5 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4):
version_ge_1_5 = ['-DVERSION_GE_1_5']
version_dependent_macros = version_ge_1_1 + version_ge_1_3 + version_ge_1_5
if "--distributed_adam" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--distributed_adam")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--distributed_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='distributed_adam_cuda',
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_adam.cpp',
'apex/contrib/csrc/optimizers/multi_tensor_distopt_adam_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc':['-O3',
'--use_fast_math'] + version_dependent_macros}))
if "--distributed_lamb" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--distributed_lamb")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--distributed_lamb was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='distributed_lamb_cuda',
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb.cpp',
'apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc':['-O3',
'--use_fast_math'] + version_dependent_macros}))
if "--cuda_ext" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--cuda_ext")
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--cuda_ext was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
check_cuda_torch_binary_vs_bare_metal(torch.utils.cpp_extension.CUDA_HOME)
ext_modules.append(
CUDAExtension(name='amp_C',
sources=['csrc/amp_C_frontend.cpp',
'csrc/multi_tensor_sgd_kernel.cu',
'csrc/multi_tensor_scale_kernel.cu',
'csrc/multi_tensor_axpby_kernel.cu',
'csrc/multi_tensor_l2norm_kernel.cu',
'csrc/multi_tensor_lamb_stage_1.cu',
'csrc/multi_tensor_lamb_stage_2.cu',
'csrc/multi_tensor_adam.cu',
'csrc/multi_tensor_adagrad.cu',
'csrc/multi_tensor_novograd.cu',
'csrc/multi_tensor_lamb.cu'],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-lineinfo',
'-O3',
# '--resource-usage',
'--use_fast_math'] + version_dependent_macros}))
ext_modules.append(
CUDAExtension(name='syncbn',
sources=['csrc/syncbn.cpp',
'csrc/welford.cu'],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros}))
ext_modules.append(
CUDAExtension(name='fused_layer_norm_cuda',
sources=['csrc/layer_norm_cuda.cpp',
'csrc/layer_norm_cuda_kernel.cu'],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-maxrregcount=50',
'-O3',
'--use_fast_math'] + version_dependent_macros}))
ext_modules.append(
CUDAExtension(name='mlp_cuda',
sources=['csrc/mlp.cpp',
'csrc/mlp_cuda.cu'],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros}))
if "--bnp" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--bnp")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--bnp was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='bnp',
sources=['apex/contrib/csrc/groupbn/batch_norm.cu',
'apex/contrib/csrc/groupbn/ipc.cu',
'apex/contrib/csrc/groupbn/interface.cpp',
'apex/contrib/csrc/groupbn/batch_norm_add_relu.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': [] + version_dependent_macros,
'nvcc':['-DCUDA_HAS_FP16=1',
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__'] + version_dependent_macros}))
if "--xentropy" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--xentropy")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--xentropy was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='xentropy_cuda',
sources=['apex/contrib/csrc/xentropy/interface.cpp',
'apex/contrib/csrc/xentropy/xentropy_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros}))
if "--deprecated_fused_adam" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--deprecated_fused_adam")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--deprecated_fused_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='fused_adam_cuda',
sources=['apex/contrib/csrc/optimizers/fused_adam_cuda.cpp',
'apex/contrib/csrc/optimizers/fused_adam_cuda_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc':['-O3',
'--use_fast_math'] + version_dependent_macros}))
if "--deprecated_fused_lamb" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--deprecated_fused_lamb")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--deprecated_fused_lamb was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='fused_lamb_cuda',
sources=['apex/contrib/csrc/optimizers/fused_lamb_cuda.cpp',
'apex/contrib/csrc/optimizers/fused_lamb_cuda_kernel.cu',
'csrc/multi_tensor_l2norm_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc':['-O3',
'--use_fast_math'] + version_dependent_macros}))
# Check, if ATen/CUDAGenerator.h is found, otherwise use the new ATen/CUDAGeneratorImpl.h, due to breaking change in https://github.com/pytorch/pytorch/pull/36026
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, 'include', 'ATen', 'CUDAGenerator.h')):
generator_flag = ['-DOLD_GENERATOR']
if "--fast_layer_norm" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--fast_layer_norm")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False)
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--fast_layer_norm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append('-gencode')
cc_flag.append('arch=compute_80,code=sm_80')
ext_modules.append(
CUDAExtension(name='fast_layer_norm',
sources=['apex/contrib/csrc/layer_norm/ln_api.cpp',
'apex/contrib/csrc/layer_norm/ln_fwd_cuda_kernel.cu',
'apex/contrib/csrc/layer_norm/ln_bwd_semi_cuda_kernel.cu',
],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'-I./apex/contrib/csrc/layer_norm/',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
if "--fast_multihead_attn" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension
sys.argv.remove("--fast_multihead_attn")
from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False)
if torch.utils.cpp_extension.CUDA_HOME is None:
raise RuntimeError("--fast_multihead_attn was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append('-gencode')
cc_flag.append('arch=compute_80,code=sm_80')
subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/multihead_attn/cutlass"])
ext_modules.append(
CUDAExtension(name='fast_additive_mask_softmax_dropout',
sources=['apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout.cpp',
'apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append(
CUDAExtension(name='fast_mask_softmax_dropout',
sources=['apex/contrib/csrc/multihead_attn/masked_softmax_dropout.cpp',
'apex/contrib/csrc/multihead_attn/masked_softmax_dropout_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn_bias_additive_mask',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn_bias',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn_norm_add',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append(
CUDAExtension(name='fast_encdec_multihead_attn',
sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn.cpp',
'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append(
CUDAExtension(name='fast_encdec_multihead_attn_norm_add',
sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add.cpp',
'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add_cuda.cu'],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
setup(
name='apex',
version='0.1',
packages=find_packages(exclude=('build',
'csrc',
'include',
'tests',
'dist',
'docs',
'tests',
'examples',
'apex.egg-info',)),
description='PyTorch Extensions written by NVIDIA',
ext_modules=ext_modules,
cmdclass=cmdclass,
extras_require=extras,
)