cloud-and-smart-labs
/
hivemq-mqtt-tensorflow-kafka-realtime-iot-machine-learning-training-inference
Public
forked from kaiwaehner/hivemq-mqtt-tensorflow-kafka-realtime-iot-machine-learning-training-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
confluent-tensorflow-io-kafka.py
58 lines (50 loc) · 1.87 KB
/
confluent-tensorflow-io-kafka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import tensorflow as tf
import confluent_kafka as kafka
# 1. MNIST Kafka Producer, run separately
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
print("train: ", (x_train.shape, y_train.shape))
producer = kafka.Producer({'bootstrap.servers': 'localhost:9092'})
count = 0
for (x, y) in zip(x_train, y_train):
producer.poll(0)
producer.produce('xx', x.tobytes())
producer.produce('yy', y.tobytes())
count += 1
print("count(x, y): ", count)
producer.flush()
import numpy as np
import tensorflow as tf
import tensorflow_io.kafka as kafka_io
import datetime
# 2. KafkaDataset with map function
def func_x(x):
# Decode image to (28, 28)
x = tf.io.decode_raw(x, out_type=tf.uint8)
x = tf.reshape(x, [28, 28])
# Convert to float32 for tf.keras
x = tf.image.convert_image_dtype(x, tf.float32)
return x
def func_y(y):
# Decode image to (,)
y = tf.io.decode_raw(y, out_type=tf.uint8)
y = tf.reshape(y, [])
return y
train_images = kafka_io.KafkaDataset(['xx:0'], group='xx', eof=True).map(func_x)
train_labels = kafka_io.KafkaDataset(['yy:0'], group='yy', eof=True).map(func_y)
train_kafka = tf.data.Dataset.zip((train_images, train_labels)).batch(1)
print(train_kafka)
# 3. Keras model
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 4. Add TensorBoard to monitor the model training
log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
# default: 5 epochs and 12000 steps
model.fit(train_kafka, epochs=1, steps_per_epoch=1000, callbacks=[tensorboard_callback])