-
Notifications
You must be signed in to change notification settings - Fork 147
/
curve.go
217 lines (194 loc) · 5.58 KB
/
curve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
package csidh
// xAdd implements differential arithmetic in P^1 for Montgomery
// curves E(x): x^3 + A*x^2 + x by using x-coordinate only arithmetic.
//
// x(PaQ) = x(P) + x(Q) by using x(P-Q)
//
// This algorithms is correctly defined only for cases when
// P!=inf, Q!=inf, P!=Q and P!=-Q.
func xAdd(PaQ, P, Q, PdQ *point) {
var t0, t1, t2, t3 fp
addRdc(&t0, &P.x, &P.z)
subRdc(&t1, &P.x, &P.z)
addRdc(&t2, &Q.x, &Q.z)
subRdc(&t3, &Q.x, &Q.z)
mulRdc(&t0, &t0, &t3)
mulRdc(&t1, &t1, &t2)
addRdc(&t2, &t0, &t1)
subRdc(&t3, &t0, &t1)
mulRdc(&t2, &t2, &t2) // sqr
mulRdc(&t3, &t3, &t3) // sqr
mulRdc(&PaQ.x, &PdQ.z, &t2)
mulRdc(&PaQ.z, &PdQ.x, &t3)
}
// xDbl implements point doubling on a Montgomery curve
// E(x): x^3 + A*x^2 + x by using x-coordinate only arithmetic.
//
// x(Q) = [2]*x(P)
//
// It is correctly defined for all P != inf.
func xDbl(Q, P, A *point) {
var t0, t1, t2 fp
addRdc(&t0, &P.x, &P.z)
mulRdc(&t0, &t0, &t0) // sqr
subRdc(&t1, &P.x, &P.z)
mulRdc(&t1, &t1, &t1) // sqr
subRdc(&t2, &t0, &t1)
mulRdc(&t1, &four, &t1)
mulRdc(&t1, &t1, &A.z)
mulRdc(&Q.x, &t0, &t1)
addRdc(&t0, &A.z, &A.z)
addRdc(&t0, &t0, &A.x)
mulRdc(&t0, &t0, &t2)
addRdc(&t0, &t0, &t1)
mulRdc(&Q.z, &t0, &t2)
}
// xDblAdd implements combined doubling of point P
// and addition of points P and Q on a Montgomery curve
// E(x): x^3 + A*x^2 + x by using x-coordinate only arithmetic.
//
// x(PaP) = x(2*P)
// x(PaQ) = x(P+Q)
func xDblAdd(PaP, PaQ, P, Q, PdQ *point, A24 *coeff) {
var t0, t1, t2 fp
addRdc(&t0, &P.x, &P.z)
subRdc(&t1, &P.x, &P.z)
mulRdc(&PaP.x, &t0, &t0)
subRdc(&t2, &Q.x, &Q.z)
addRdc(&PaQ.x, &Q.x, &Q.z)
mulRdc(&t0, &t0, &t2)
mulRdc(&PaP.z, &t1, &t1)
mulRdc(&t1, &t1, &PaQ.x)
subRdc(&t2, &PaP.x, &PaP.z)
mulRdc(&PaP.z, &PaP.z, &A24.c)
mulRdc(&PaP.x, &PaP.x, &PaP.z)
mulRdc(&PaQ.x, &A24.a, &t2)
subRdc(&PaQ.z, &t0, &t1)
addRdc(&PaP.z, &PaP.z, &PaQ.x)
addRdc(&PaQ.x, &t0, &t1)
mulRdc(&PaP.z, &PaP.z, &t2)
mulRdc(&PaQ.z, &PaQ.z, &PaQ.z)
mulRdc(&PaQ.x, &PaQ.x, &PaQ.x)
mulRdc(&PaQ.z, &PaQ.z, &PdQ.x)
mulRdc(&PaQ.x, &PaQ.x, &PdQ.z)
}
// cswappoint swaps P1 with P2 in constant time. The 'choice'
// parameter must have a value of either 1 (results
// in swap) or 0 (results in no-swap).
func cswappoint(P1, P2 *point, choice uint8) {
cswap512(&P1.x, &P2.x, choice)
cswap512(&P1.z, &P2.z, choice)
}
// xMul implements point multiplication with left-to-right Montgomery
// adder. co is A coefficient of x^3 + A*x^2 + x curve. k must be > 0
//
// Non-constant time!
func xMul(kP, P *point, co *coeff, k *fp) {
var A24 coeff
var Q point
var j uint
A := point{x: co.a, z: co.c}
R := *P
// Precompyte A24 = (A+2C:4C) => (A24.x = A.x+2A.z; A24.z = 4*A.z)
addRdc(&A24.a, &co.c, &co.c)
addRdc(&A24.a, &A24.a, &co.a)
mulRdc(&A24.c, &co.c, &four)
// Skip initial 0 bits.
for j = 511; j > 0; j-- {
// performance hit from making it constant-time is actually
// quite big, so... unsafe branch for now
if uint8(k[j>>6]>>(j&63)&1) != 0 {
break
}
}
xDbl(&Q, P, &A)
prevBit := uint8(1)
for i := j; i > 0; {
i--
bit := uint8(k[i>>6] >> (i & 63) & 1)
cswappoint(&Q, &R, prevBit^bit)
xDblAdd(&Q, &R, &Q, &R, P, &A24)
prevBit = bit
}
cswappoint(&Q, &R, uint8(k[0]&1))
*kP = Q
}
// xIso computes the isogeny with kernel point kern of a given order
// kernOrder. Returns the new curve coefficient co and the image img.
//
// During computation function switches between Montgomery and twisted
// Edwards curves in order to compute image curve parameters faster.
// This technique is described by Meyer and Reith in ia.cr/2018/782.
//
// Non-constant time.
func xIso(img *point, co *coeff, kern *point, kernOrder uint64) {
var t0, t1, t2, S, D fp
var Q, prod point
var coEd coeff
M := [3]point{*kern}
// Compute twisted Edwards coefficients
// coEd.a = co.a + 2*co.c
// coEd.c = co.a - 2*co.c
// coEd.a*X^2 + Y^2 = 1 + coEd.c*X^2*Y^2
addRdc(&coEd.c, &co.c, &co.c)
addRdc(&coEd.a, &co.a, &coEd.c)
subRdc(&coEd.c, &co.a, &coEd.c)
// Transfer point to twisted Edwards YZ-coordinates
// (X:Z)->(Y:Z) = (X-Z : X+Z)
addRdc(&S, &img.x, &img.z)
subRdc(&D, &img.x, &img.z)
subRdc(&prod.x, &kern.x, &kern.z)
addRdc(&prod.z, &kern.x, &kern.z)
mulRdc(&t1, &prod.x, &S)
mulRdc(&t0, &prod.z, &D)
addRdc(&Q.x, &t0, &t1)
subRdc(&Q.z, &t0, &t1)
xDbl(&M[1], kern, &point{x: co.a, z: co.c})
// NOTE: Not constant time.
for i := uint64(1); i < kernOrder>>1; i++ {
if i >= 2 {
xAdd(&M[i%3], &M[(i-1)%3], kern, &M[(i-2)%3])
}
subRdc(&t1, &M[i%3].x, &M[i%3].z)
addRdc(&t0, &M[i%3].x, &M[i%3].z)
mulRdc(&prod.x, &prod.x, &t1)
mulRdc(&prod.z, &prod.z, &t0)
mulRdc(&t1, &t1, &S)
mulRdc(&t0, &t0, &D)
addRdc(&t2, &t0, &t1)
mulRdc(&Q.x, &Q.x, &t2)
subRdc(&t2, &t0, &t1)
mulRdc(&Q.z, &Q.z, &t2)
}
mulRdc(&Q.x, &Q.x, &Q.x)
mulRdc(&Q.z, &Q.z, &Q.z)
mulRdc(&img.x, &img.x, &Q.x)
mulRdc(&img.z, &img.z, &Q.z)
// coEd.a^kernOrder and coEd.c^kernOrder
modExpRdc64(&coEd.a, &coEd.a, kernOrder)
modExpRdc64(&coEd.c, &coEd.c, kernOrder)
// prod^8
mulRdc(&prod.x, &prod.x, &prod.x)
mulRdc(&prod.x, &prod.x, &prod.x)
mulRdc(&prod.x, &prod.x, &prod.x)
mulRdc(&prod.z, &prod.z, &prod.z)
mulRdc(&prod.z, &prod.z, &prod.z)
mulRdc(&prod.z, &prod.z, &prod.z)
// Compute image curve params
mulRdc(&coEd.c, &coEd.c, &prod.x)
mulRdc(&coEd.a, &coEd.a, &prod.z)
// Convert curve coefficients back to Montgomery
addRdc(&co.a, &coEd.a, &coEd.c)
subRdc(&co.c, &coEd.a, &coEd.c)
addRdc(&co.a, &co.a, &co.a)
}
// montEval evaluates x^3 + Ax^2 + x.
func montEval(res, A, x *fp) {
var t fp
*res = *x
mulRdc(res, res, res)
mulRdc(&t, A, x)
addRdc(res, res, &t)
addRdc(res, res, &one)
mulRdc(res, res, x)
}