-
Notifications
You must be signed in to change notification settings - Fork 147
/
fp511_generic.go
180 lines (148 loc) · 4.5 KB
/
fp511_generic.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
package csidh
import "math/bits"
// mul576 implements schoolbook multiplication of
// 64x512-bit integer. Returns result modulo 2^512.
// r = m1*m2.
func mul512Generic(r, m1 *fp, m2 uint64) {
var c, h, l uint64
c, r[0] = bits.Mul64(m2, m1[0])
h, l = bits.Mul64(m2, m1[1])
r[1], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[2])
r[2], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[3])
r[3], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[4])
r[4], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[5])
r[5], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[6])
r[6], c = bits.Add64(l, c, 0)
c = h + c
_, l = bits.Mul64(m2, m1[7])
r[7], _ = bits.Add64(l, c, 0)
}
// mul576 implements schoolbook multiplication of
// 64x512-bit integer. Returns 576-bit result of
// multiplication.
// r = m1*m2.
func mul576Generic(r *[9]uint64, m1 *fp, m2 uint64) {
var c, h, l uint64
c, r[0] = bits.Mul64(m2, m1[0])
h, l = bits.Mul64(m2, m1[1])
r[1], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[2])
r[2], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[3])
r[3], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[4])
r[4], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[5])
r[5], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[6])
r[6], c = bits.Add64(l, c, 0)
c = h + c
h, l = bits.Mul64(m2, m1[7])
r[7], c = bits.Add64(l, c, 0)
r[8], c = bits.Add64(h, c, 0)
r[8] += c
}
// cswap512 implements constant time swap operation.
// If choice = 0, leave x,y unchanged. If choice = 1, set x,y = y,x.
// If choice is neither 0 nor 1 then behaviour is undefined.
func cswap512Generic(x, y *fp, choice uint8) {
var tmp uint64
mask64 := 0 - uint64(choice)
for i := 0; i < numWords; i++ {
tmp = mask64 & (x[i] ^ y[i])
x[i] = tmp ^ x[i]
y[i] = tmp ^ y[i]
}
}
// mulRdc performs montgomery multiplication r = x * y mod P.
// Returned result r is already reduced and in Montgomery domain.
func mulRdcGeneric(r, x, y *fp) {
var t fp
var c uint64
mulGeneric(r, x, y)
// if p <= r < 2p then r = r-p
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
w := 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
func mulGeneric(r, x, y *fp) {
var s fp // keeps intermediate results
var t1, t2 [9]uint64
var c, q uint64
for i := 0; i < numWords-1; i++ {
q = ((x[i] * y[0]) + s[0]) * pNegInv[0]
mul576Generic(&t1, &p, q)
mul576Generic(&t2, y, x[i])
// x[i]*y + q_i*p
t1[0], c = bits.Add64(t1[0], t2[0], 0)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
// s = (s + x[i]*y + q_i * p) / R
_, c = bits.Add64(t1[0], s[0], 0)
s[0], c = bits.Add64(t1[1], s[1], c)
s[1], c = bits.Add64(t1[2], s[2], c)
s[2], c = bits.Add64(t1[3], s[3], c)
s[3], c = bits.Add64(t1[4], s[4], c)
s[4], c = bits.Add64(t1[5], s[5], c)
s[5], c = bits.Add64(t1[6], s[6], c)
s[6], c = bits.Add64(t1[7], s[7], c)
s[7], _ = bits.Add64(t1[8], 0, c)
}
// last iteration stores result in r
q = ((x[numWords-1] * y[0]) + s[0]) * pNegInv[0]
mul576Generic(&t1, &p, q)
mul576Generic(&t2, y, x[numWords-1])
t1[0], c = bits.Add64(t1[0], t2[0], c)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
_, c = bits.Add64(t1[0], s[0], 0)
r[0], c = bits.Add64(t1[1], s[1], c)
r[1], c = bits.Add64(t1[2], s[2], c)
r[2], c = bits.Add64(t1[3], s[3], c)
r[3], c = bits.Add64(t1[4], s[4], c)
r[4], c = bits.Add64(t1[5], s[5], c)
r[5], c = bits.Add64(t1[6], s[6], c)
r[6], c = bits.Add64(t1[7], s[7], c)
r[7], _ = bits.Add64(t1[8], 0, c)
}