-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path10_StochasticContinuous_solutions.qmd
283 lines (231 loc) · 7.86 KB
/
10_StochasticContinuous_solutions.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---
title: "10. Stochastic continuous time models (solutions)"
---
## Practical 1. Stochastic simulation with the Gillespie algorithm
```{r, output = FALSE}
library(ggplot2) ## for plotting
library(dplyr) ## for manipulation of results
library(tidyr) ## for storing multiple simulation runs in a data frame
## Function SIR_gillespie.
## This takes three arguments:
## - init_state: the initial state
## (a named vector containing the number in S, I and R)
## - parms: the parameters
## (a named vector containing the rates beta and gamma)
## - tf: the end time
SIR_gillespie <- function(init_state, parms, tf) {
time <- 0 ## initialise time to 0
## assign parameters to easy-access variables
beta <- parms[["beta"]]
gamma <- parms[["gamma"]]
## assign states to easy-access variables
S <- init_state[["S"]]
I <- init_state[["I"]]
R <- init_state[["R"]]
N <- S + I + R
## create results data frame
results_df <- data.frame(time = 0, t(init_state))
## loop until end time is reached
while (time < tf) {
## update current rates
rates <- c(
infection = beta * S * I / N,
recovery = gamma * I
)
if (sum(rates) > 0) { ## check if any event can happen
## time of next event
time <- time + rexp(n = 1, rate = sum(rates))
## check if next event is supposed to happen before end time
if (time <= tf) {
## determine the type of the next event
next_event <- sample(x = length(rates), size = 1, prob = rates)
## change to name
next_event <- names(rates)[next_event]
## determine type of next event
if (next_event == "infection") {
## infection
S <- S - 1
I <- I + 1
} else if (next_event == "recovery") {
## recovery
I <- I - 1
R <- R + 1
}
} else { ## next event happens after end time
time <- tf
}
} else { ## no event can happen - go straight to end time
time <- tf
}
## add new row to results data frame
results_df <- rbind(results_df, c(time = time, S = S, I = I, R = R))
}
## return results data frame
return(results_df)
}
init.values <- c(S = 249, I = 1, R = 0) ## initial state
parms <- c(beta = 1, gamma = 0.5) ## parameter vector
tmax <- 20 ## end time
## run Gillespie simulation
r <- SIR_gillespie(init_state = init.values, parms = parms, tf = tmax)
## Plot the result
ggplot(r) +
geom_line(aes(time, I, colour = "I"))
## Re-run this from the line `r <- SIR_gillespie(...)` a few times to
## convince yourself the output is different every time.
## Run multiple simulation runs and plot a few of them
nsim <- 100 ## number of trial simulations
## We store the simulations in a data frame, traj, which
## contains the results from multiple simulation runs and an additional column
## that represents the simulation index
traj <- tibble(i = 1:nsim) %>%
rowwise() %>%
mutate(trajectory = list(as.data.frame(
SIR_gillespie(init.values, parms, tmax)))) %>%
unnest(trajectory)
## convert to long data frame
mlr <- traj %>%
gather(compartment, value, 3:ncol(.))
## Next, plot the multiple simulation runs
ggplot(mlr,
aes(x = time, y = value, group = i, color = compartment)) +
geom_line() +
facet_wrap(~compartment)
## Plot the distribution of overall outbreak sizes.
## create data frame of outbreak sizes
outbreak_sizes <- mlr %>%
filter(compartment=="R") %>%
group_by(i) %>%
filter(time==max(time)) %>%
select(i, size = value)
## plot it as a histogram
ggplot(outbreak_sizes, aes(x = size)) +
geom_histogram()
## determine number of large outbreaks (defined as larger than 50)
outbreak_sizes %>%
filter(size > 50) %>%
nrow
## Extract the values of the trajectory at integer time points
timeTraj <- mlr %>%
group_by(i, compartment) %>%
summarise(traj = list(data.frame(
time = seq(0, tmax, by = 0.1),
value = approx(x = time, y = value, xout = seq(0, tmax, by = 0.1),
method="constant")$y))) %>%
unnest(traj)
## Calculate summary trajectory with mean & sd of infectious people over time
sumTraj <- timeTraj %>%
filter(compartment=="I") %>%
group_by(time) %>%
summarise(
mean = mean(value),
sd = sd(value))
## plot
ggplot(sumTraj, aes(x = time, y = mean, ymin = pmax(0, mean-sd), ymax = mean+sd)) +
geom_line() +
geom_ribbon(alpha = 0.3)
## Only consider trajectories that have not gone extinct:
sumTrajAll <- sumTraj %>%
mutate(trajectories="all")
sumTrajGr0 <- timeTraj %>%
filter(compartment=="I", value > 0) %>%
group_by(time) %>%
summarise(mean = mean(value),
sd = sd(value)) %>%
mutate(trajectories="greater_than_zero")
iTraj <- bind_rows(sumTrajAll, sumTrajGr0)
## plot
ggplot(iTraj, aes(x = time, y = mean, ymin = pmax(0, mean-sd), ymax = mean+sd,
colour = trajectories, fill = trajectories)) +
geom_line() +
geom_ribbon(alpha = 0.3) +
scale_color_brewer(palette="Set1")
## We now compare the two averages to the deterministic trajectory
## Model function (from ODE practical)
library(deSolve)
SIR_model <- function(times, state, parms){
## Define variables
S <- state["S"]
I <- state["I"]
R <- state["R"]
N <- S + I + R
# Extract parameters
beta <- parms["beta"]
gamma <- parms["gamma"]
# Define differential equations
dS <- - (beta * S * I) / N
dI <- (beta * S * I) / N - gamma * I
dR <- gamma * I
res <- list(c(dS, dI, dR ))
return(res)
}
ode_output_raw <-
ode(y = init.values, times = seq(0, tmax), func = SIR_model, parms = parms,
method = "rk4")
## Convert to data frame for easy extraction of columns
ode_output <- as.data.frame(ode_output_raw)
## Combine into one big data frame
allTraj <- ode_output %>%
gather(compartment, value, 2:ncol(.)) %>% ## convert to long format
filter(compartment=="I") %>%
rename(mean = value) %>% ## in deterministic, mean = value
mutate(trajectories="deterministic", ## label trajectories
sd = 0) %>% ## in deterministic, sd = 0
bind_rows(iTraj)
## plot
ggplot(allTraj, aes(x = time, y = mean, colour = trajectories)) +
geom_line() +
scale_color_brewer(palette="Set1")
```
## Practical 2. The `adaptivetau` package
```{r, output = FALSE}
library(adaptivetau) ## for stochastic simulations
## Define transitions
transitions <- list(
c(S = -1, I = +1),
c(I = -1, R = +1))
## Specify rate function, giving rate for each transition
SIRrateF <- function(state, parms, time) {
beta <- parms[["beta"]]
gamma <- parms[["gamma"]]
S <- state[["S"]]
I <- state[["I"]]
R <- state[["R"]]
N <- S + I + R
rates <- c(beta * S * I/N,
gamma * I)
return(rates)
}
## Initial values
init.values <- c(S = 249, ## number of susceptibles
I = 10, ## number infectious
R = 0) ## number immune
## Parameters
parms <- c(beta = 2, ## infection rate
gamma = 1) ## recovery rate
## Run a trial simulation for 60 time steps
tmax <- 60 ## number of time steps to simulate
r <- ssa.adaptivetau(init.values, transitions, SIRrateF, parms, tf = tmax)
## Plot results
r_df <- as.data.frame(r)
plot(r_df$time, r_df$I, type = "l")
## Run the simulation multiple times
nsim <- 100 ## number of trial simulations
system.time(adaptivetau.traj <- tibble(i = 1:nsim) %>%
rowwise() %>%
mutate(trajectory = list(as.data.frame(
ssa.adaptivetau(init.values, transitions, SIRrateF, parms, tf = tmax)
))) %>%
unnest(trajectory))
## Plot the resulting trajectories
ggplot(adaptivetau.traj) +
geom_line(aes(x = time, y = I, group = i, colour = i))
## Run Gillespie simulations again
system.time(gillespie.traj <- tibble(i = 1:nsim) %>%
rowwise() %>%
mutate(trajectory = list(as.data.frame(
SIR_gillespie(init.values, parms, tmax)))) %>%
unnest(trajectory)
)
```
**Return to the practical [here](10_StochasticContinuous_practical.qmd).**