forked from edx/edx-ora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_util.py
155 lines (129 loc) · 4.65 KB
/
test_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from django.contrib.auth.models import User, Group, Permission
from django.test.client import Client
from django.conf import settings
from controller.models import Submission, Grader, SubmissionState , GraderStatus
from django.utils import timezone
from controller.models import Submission,Grader
from peer_grading.models import CalibrationHistory,CalibrationRecord
import random
import json
from ml_grading import ml_model_creation
from django.db.models import Max
import string
import random
from controller.control_util import SubmissionControl
from peer_grading.peer_grading_util import PeerLocation
import logging
log = logging.getLogger(__name__)
MAX_SCORE = 3
RUBRIC_XML = """
<rubric>
<category>
<description>One</description>
<option>0</option>
<option>1</option>
</category>
<category>
<description>Two</description>
<option>0</option>
<option>1</option>
</category>
</rubric>
"""
def create_user():
if(User.objects.filter(username='test').count() == 0):
user = User.objects.create_user('test', 'test@test.com', 'CambridgeMA')
user.is_staff = True
user.is_superuser = True
submitters, created = Group.objects.get_or_create(name=settings.SUBMITTERS_GROUP)
view_submission = Permission.objects.get(codename=settings.EDIT_SUBMISSIONS_PERMISSION)
submitters.permissions.add(view_submission)
user.groups.add(submitters)
user.save()
def delete_all():
for sub in Submission.objects.all():
sub.delete()
for grade in Grader.objects.all():
grade.delete()
for cal_hist in CalibrationHistory.objects.all():
cal_hist.delete()
for cal_record in CalibrationRecord.objects.all():
cal_record.delete()
def get_sub(grader_type,student_id,location, preferred_grader_type="ML", course_id="course_id", rubric=RUBRIC_XML, student_response = "This is a response that will hopefully pass basic sanity checks."):
prefix = "ml"
if preferred_grader_type=="PE":
prefix = "peer"
# Get all existing xqueue ids
xqueue_id = generate_new_xqueue_id()
test_sub = Submission(
prompt="prompt",
student_id=student_id,
problem_id="id",
state=SubmissionState.waiting_to_be_graded,
student_response= student_response,
student_submission_time=timezone.now(),
xqueue_submission_id=xqueue_id,
xqueue_submission_key="key",
xqueue_queue_name="MITx-6.002x",
location=location,
course_id=course_id,
max_score=MAX_SCORE,
next_grader_type=grader_type,
previous_grader_type=grader_type,
grader_settings= prefix + "_grading.conf",
preferred_grader_type=preferred_grader_type,
rubric = rubric,
)
return test_sub
def get_grader(grader_type, status_code=GraderStatus.success, score = None):
if score is None:
score = random.randint(0, MAX_SCORE)
test_grader=Grader(
score= score,
feedback="",
status_code=status_code,
grader_id="1",
grader_type=grader_type,
confidence=1,
is_calibration=False,
)
return test_grader
def get_student_info(student_id):
student_info = {
'submission_time': timezone.now().strftime("%Y%m%d%H%M%S"),
'anonymous_student_id': student_id
}
return json.dumps(student_info)
def generate_new_xqueue_id():
xqueue_ids = [i['xqueue_submission_id'] for i in Submission.objects.all().values('xqueue_submission_id')]
# Xqueue id needs to be unique, so ensure you generate a unique value.
xqueue_id = 'a'
while xqueue_id in xqueue_ids:
id_length = random.randint(1,10)
xqueue_id = 'a'
for i in xrange(0, id_length):
xqueue_id += random.choice(string.ascii_letters)
return xqueue_id
def get_xqueue_header():
xqueue_header = {
'submission_id': generate_new_xqueue_id(),
'submission_key': 1,
'queue_name': "MITx-6.002x",
}
return json.dumps(xqueue_header)
def create_ml_model(student_id, location):
sub = get_sub("IN",student_id,location, "ML")
sub.state = SubmissionState.finished
sub.save()
pl = PeerLocation(location, student_id)
control = SubmissionControl(pl.latest_submission())
# Create enough instructor graded submissions that ML will work.
for i in xrange(0, control.minimum_to_use_ai):
sub = get_sub("IN", student_id, location, "ML")
sub.state = SubmissionState.finished
sub.save()
grade = get_grader("IN")
grade.submission = sub
grade.save()
# Create ML Model
ml_model_creation.handle_single_location(location)