-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreranking_eval.py
80 lines (67 loc) · 2.29 KB
/
reranking_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# run reranking test suite for a pair of d2p and p2d models, with direct hparam input
import torch
from einops import rearrange, repeat
import pytorch_lightning as pl
from lib.analysis_utils import *
from specialtokens import *
from tqdm import tqdm
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
import torchshow as ts
import os
import argparse
import json
from lib.reranking_utils import get_reranking_hparam
import os
from dotenv import load_dotenv
load_dotenv()
WANDB_ENTITY = os.getenv("WANDB_ENTITY")
WANDB_PROJECT = os.getenv("WANDB_PROJECT")
parser = argparse.ArgumentParser()
parser.add_argument("d2p_id") # run id
parser.add_argument("p2d_id") # run id
args = parser.parse_args()
config = vars(args)
print("running: ", config)
D2P_RUN = config["d2p_id"]
P2D_RUN = config["p2d_id"]
# === load d2p model ===
d2p_run = SubmodelRun(D2P_RUN, 'best')
assert d2p_run.config_class.submodel == 'd2p'
d2p_dm = d2p_run.get_dm()
d2p_model = d2p_run.get_model(d2p_dm)
# === load p2d model ===
p2d_run = SubmodelRun(P2D_RUN, 'best')
assert p2d_run.config_class.submodel == 'p2d'
p2d_dm = p2d_run.get_dm()
p2d_model = p2d_run.get_model(p2d_dm)
# === Making sure the two models use same dataset ===
assert d2p_run.config_class.dataset == p2d_run.config_class.dataset
# === evaluation! ===
best_beam_size, best_beam_reranker_weight_ratio = get_reranking_hparam(d2p_run, p2d_run)
run = wandb.init(
mode = "online",
entity = WANDB_ENTITY,
project = WANDB_PROJECT,
tags = ['reranking_eval2_fixed_beam_fixed_ratio'],
config = {
'd2p_run': D2P_RUN,
'd2p_architecture': d2p_run.config_class.architecture,
'p2d_run': P2D_RUN,
'p2d_architecture': p2d_run.config_class.architecture,
'dataset': d2p_run.config_class.dataset,
'best_beam_size': best_beam_size,
'best_beam_reranker_weight_ratio': best_beam_reranker_weight_ratio,
},
)
print('this run:', wandb.config)
test_res = batched_reranking_eval(d2p_model, p2d_model, d2p_dm,
reranker = BatchedCorrectRateReranker(p2d_model),
rescorer = BatchedLinearRescorer(original_log_prob_weight = 1.0, reranker_weight = best_beam_reranker_weight_ratio),
beam_size = best_beam_size,
split = 'test',
)
print('result:', test_res)
wandb.log(test_res)