-
Notifications
You must be signed in to change notification settings - Fork 0
/
SEIS without vd.nb
5359 lines (5313 loc) · 257 KB
/
SEIS without vd.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 263033, 5350]
NotebookOptionsPosition[ 261195, 5293]
NotebookOutlinePosition[ 261580, 5309]
CellTagsIndexPosition[ 261537, 5306]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[", "\"\<Global`*\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{"Needs", "[", "\"\<PlotLegends`\>\"", "]"}], "\n",
RowBox[{
RowBox[{"eq1", "=",
RowBox[{
RowBox[{
RowBox[{"-", "\[Beta]"}], " ", "*", " ",
RowBox[{"s", "[", "t", "]"}], "*", " ",
FractionBox[
RowBox[{"i", "[", "t", "]"}], "n"]}], "+",
RowBox[{"\[Gamma]", " ",
RowBox[{"i", "[", "t", "]"}]}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"eq2", "=",
RowBox[{
RowBox[{"\[Beta]", "*",
RowBox[{"s", "[", "t", "]"}], "*",
FractionBox[
RowBox[{"i", "[", "t", "]"}], "n"]}], "-",
RowBox[{"\[Epsilon]", "*",
RowBox[{"e", "[", "t", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eq3", "=",
RowBox[{
RowBox[{"\[Epsilon]", "*",
RowBox[{"e", "[", "t", "]"}]}], "-",
RowBox[{"\[Gamma]", " ",
RowBox[{"i", "[", "t", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Beta]", "=", "0.16"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]", "=", "0.12"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Gamma]", "=", "0.4"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"R0", "=",
RowBox[{"N", "[",
FractionBox["\[Beta]", "\[Gamma]"], "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tf", "=", "100"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"szero", "=", "0.80"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ezero", "=", "0.18"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"izero", "=", "0.02"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sol", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"s", "'"}], "[", "t", "]"}], "\[Equal]", "eq1"}], ",",
RowBox[{
RowBox[{
RowBox[{"e", "'"}], "[", "t", "]"}], "\[Equal]", "eq2"}], ",",
RowBox[{
RowBox[{
RowBox[{"i", "'"}], "[", "t", "]"}], "\[Equal]", "eq3"}], ",",
RowBox[{
RowBox[{"s", "[", "0", "]"}], "\[Equal]", "szero"}], ",",
RowBox[{
RowBox[{"e", "[", "0", "]"}], "\[Equal]", "ezero"}], ",",
RowBox[{
RowBox[{"i", "[", "0", "]"}], "\[Equal]", "izero"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s", ",", "e", ",", "i"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "tf"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"a", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"\"\<S\>\"", "[", "t", "]"}]}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Blue"}]}]}], "]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"S", "[", "t", "]"}], " ", "versus", " ", "t"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"plot1a", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"a", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "\"\<Density\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Blue"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}]}], "]"}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"S", "[", "t", "]"}], " ", "versus", " ", "t"}], " ", "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot2", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"b", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"e", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"\"\<E\>\"", "[", "t", "]"}]}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Red"}]}]}], "]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"E", "[", "t", "]"}], " ", "versus", " ", "t"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"plot2a", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"b", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"e", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "\"\<Density\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Orange"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}]}], "]"}]}], " ", ";"}],
"\[IndentingNewLine]", "\n"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot3", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"c", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"i", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"\"\<I\>\"", "[", "t", "]"}]}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Green"}]}]}], "]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"For", " ",
RowBox[{"I", "[", "t", "]"}], " ", "versus", " ", "t"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"plot3a", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"c", "[", "t", "]"}], "=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"i", "[", "t", "]"}], "/.", "sol"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "\"\<Density\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}], ",",
RowBox[{"Mesh", "\[Rule]", "10"}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"Darker", "@", "Red"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}]}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ShowLegend", "[",
RowBox[{
RowBox[{"Show", "[",
RowBox[{"plot1a", " ", ",", "plot2a", ",", "plot3a"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}],
"]"}], ",", "\"\<S(t)\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Orange", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}],
"]"}], ",", "\"\<E(t)\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}],
"]"}], ",", "\"\<I(t)\>\""}], "}"}]}], "}"}], ",",
RowBox[{"LegendShadow", "\[Rule]", "None"}], ",",
RowBox[{"LegendSpacing", "\[Rule]", "0"}], ",",
RowBox[{"LegendSize", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0.5", ",", "0.5"}], "}"}]}]}], "}"}]}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotall", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"s", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"e", "[", "t", "]"}], "/.", "sol"}], "]"}], ",",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"i", "[", "t", "]"}], "/.", "sol"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "tf"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.05"}], ",", "1.1"}], "}"}]}], "}"}]}], ",",
RowBox[{"PlotLegend", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<S(t)\>\"", ",", "\"\<E(t)\>\"", ",", "\"\<I(t)\>\""}],
"}"}]}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Thick", ",", "Blue"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Thick", ",", "Orange"}], "}"}], ",",
RowBox[{"{",
RowBox[{"Thick", ",", "Red"}], "}"}]}], "}"}]}], ",",
RowBox[{"LegendShadow", "\[Rule]", "None"}], ",",
RowBox[{"LegendSpacing", "\[Rule]", "0"}], ",",
RowBox[{"LegendPosition", "\[Rule]",
RowBox[{"{",
RowBox[{"0.2", ",", "0"}], "}"}]}], ",",
RowBox[{"LegendSize", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0.2", ",", "0.3"}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",", "Dotted"}], "]"}]}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"\<Density \>\"", ",", "\"\<\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<time \>\"", "[", "t", "]"}], ",", "\"\<\>\""}],
"}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]"}], "\n",
RowBox[{
RowBox[{"(*",
RowBox[{"plotP", "=",
RowBox[{
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], ",",
RowBox[{"x2", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "t", "]"}], ",",
RowBox[{"\"\<E\>\"", "[", "t", "]"}]}], "}"}]}]}], "]"}],
"\[IndentingNewLine]", "plotQ"}], "=",
RowBox[{
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], ",",
RowBox[{"x3", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"\"\<E\>\"", "[", "t", "]"}], ",",
RowBox[{"\"\<I\>\"", "[", "t", "]"}]}], "}"}]}]}], "]"}], "\n",
"plotR"}], "=",
RowBox[{
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], ",",
RowBox[{"x3", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "t", "]"}], ",",
RowBox[{"\"\<I\>\"", "[", "t", "]"}]}], "}"}]}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"h1", "[", "t_", "]"}]}], ":=",
RowBox[{
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x1", "[", "t", "]"}], "/.", "sol"}], "]"}], "\n",
RowBox[{"h2", "[", "t_", "]"}]}], ":=",
RowBox[{
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x2", "[", "t", "]"}], "/.", "sol"}], "]"}],
"\[IndentingNewLine]",
RowBox[{"h3", "[", "t_", "]"}]}], ":=",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x3", "[", "t", "]"}], "/.", "sol"}], "]"}]}]}]}]}]}]}],
"*)"}]}]}], "Input",
CellChangeTimes->{{3.5638355904558997`*^9, 3.563835704468421*^9}, {
3.563835950077469*^9, 3.56383606512805*^9}, {3.56383613822723*^9,
3.563836367357336*^9}, {3.563836441114555*^9, 3.563836444201731*^9}, {
3.563836535058928*^9, 3.563836589524043*^9}, {3.5638366644783306`*^9,
3.563836665858409*^9}, 3.563836695909128*^9, {3.563836848841875*^9,
3.5638368525680885`*^9}, {3.5638372255084195`*^9, 3.563837265661716*^9}, {
3.5638383151507435`*^9, 3.5638383180759106`*^9}, 3.563838362903475*^9, {
3.5638384377487555`*^9, 3.563838575206618*^9}, {3.5638386112096767`*^9,
3.563838657701336*^9}, 3.5638386889021206`*^9, {3.5638388049467583`*^9,
3.5638388069938755`*^9}, {3.5638388495773106`*^9,
3.5638389667440124`*^9}, {3.563839052506918*^9, 3.563839071571008*^9}, {
3.563839147339342*^9, 3.563839232596218*^9}, {3.563839314060878*^9,
3.56383942477421*^9}, {3.5638394696337757`*^9, 3.563839480051372*^9}, {
3.5638395362795877`*^9, 3.5638395453271055`*^9}, {3.5638395986821575`*^9,
3.5638396665290375`*^9}, {3.563839704558213*^9, 3.5638397404972687`*^9}, {
3.5638398239280405`*^9, 3.5638399312031765`*^9}, {3.563840014577945*^9,
3.5638400676949835`*^9}, {3.5638401105414343`*^9,
3.5638401221330967`*^9}, {3.5638401613373394`*^9, 3.563840168990777*^9}, {
3.5638402066729326`*^9, 3.5638402331264453`*^9}, {3.563840302771429*^9,
3.563840436440074*^9}, {3.563840514500539*^9, 3.563840531504512*^9}, {
3.5638405784992*^9, 3.5638405821144066`*^9}, {3.563840618338478*^9,
3.5638406387506456`*^9}, {3.5638407249235744`*^9,
3.5638408190029554`*^9}, {3.563840856229085*^9, 3.5638408646885686`*^9}, {
3.5638410103198986`*^9, 3.5638410835630875`*^9}, {3.563904889849905*^9,
3.5639048947221837`*^9}, 3.563905146271571*^9, {3.563905177983385*^9,
3.56390518226363*^9}, {3.56390525411874*^9, 3.563905299470334*^9}, {
3.563905472683241*^9, 3.563905489465201*^9}, {3.563905647569244*^9,
3.5639056597809424`*^9}, 3.563905703646451*^9, {3.563905742419669*^9,
3.5639057793877835`*^9}, {3.563905869972965*^9, 3.563905882011653*^9}, {
3.563905928065287*^9, 3.5639059436801805`*^9}, {3.563906210805459*^9,
3.563906215908751*^9}, {3.563906296232345*^9, 3.5639063025807085`*^9}, {
3.563906365490307*^9, 3.5639063658563275`*^9}, {3.563906424897704*^9,
3.563906433242182*^9}, {3.563906471104347*^9, 3.5639064759836264`*^9}, {
3.5639065288356495`*^9, 3.563906529453685*^9}, {3.5639068329810457`*^9,
3.5639068636147976`*^9}, {3.563906895527623*^9, 3.563906897037709*^9}, {
3.563907110560922*^9, 3.5639071121890154`*^9}, {3.563907274969326*^9,
3.56390743274035*^9}, {3.5639074760618277`*^9, 3.5639074793070135`*^9}, {
3.5639075838239913`*^9, 3.5639075917484446`*^9}, {3.5639076912791376`*^9,
3.563907827329919*^9}, {3.56390786003179*^9, 3.56390792333441*^9}, {
3.563908035557829*^9, 3.5639080787833014`*^9}, 3.5639084082481456`*^9, {
3.563908463246291*^9, 3.563908492127943*^9}, 3.563908626086605*^9, {
3.563908825166992*^9, 3.5639088270190983`*^9}, {3.563909238651642*^9,
3.563909240037721*^9}, {3.563909322232423*^9, 3.5639093344691224`*^9}, {
3.563909382587875*^9, 3.563909606090658*^9}, {3.5639097046552963`*^9,
3.563909707405453*^9}, {3.5639097449105988`*^9, 3.563909747819765*^9}, {
3.5639097912782507`*^9, 3.5639098366698465`*^9}, {3.5639098902499113`*^9,
3.563909890652934*^9}, {3.563909925842947*^9, 3.563909927602048*^9}, {
3.5639099589818425`*^9, 3.563909959344863*^9}, {3.5639099995731645`*^9,
3.563910046916872*^9}, {3.563910148071658*^9, 3.5639101691978664`*^9},
3.5639102340005727`*^9, {3.5639102721207533`*^9, 3.563910351650302*^9}, {
3.563910421532299*^9, 3.563910510495387*^9}, {3.5639105664275866`*^9,
3.5639105760811386`*^9}, {3.5639106580418262`*^9,
3.5639106824562225`*^9}, {3.5639107247046394`*^9, 3.563910728398851*^9}, {
3.563910840744276*^9, 3.563910862496521*^9}, {3.563910926792198*^9,
3.5639109604401226`*^9}, {3.563911036075449*^9, 3.563911037511531*^9}, {
3.563911431340057*^9, 3.563911437320399*^9}, {3.5639114789257784`*^9,
3.563911493954638*^9}, {3.563911525254428*^9, 3.5639115374281244`*^9}, {
3.5639115750762777`*^9, 3.5639115880030174`*^9}, 3.5639116582250338`*^9, {
3.5639116984503345`*^9, 3.56391176008786*^9}, {3.5639119457344785`*^9,
3.563911983828657*^9}, {3.5639125210403843`*^9, 3.5639125490409856`*^9}, {
3.5639125979987855`*^9, 3.5639126611083956`*^9}, {3.5639128670021715`*^9,
3.563912872138466*^9}, {3.5639130702837987`*^9, 3.5639131278820934`*^9}, {
3.5639132526262283`*^9, 3.563913434192613*^9}, {3.5639134979902625`*^9,
3.5639135222086477`*^9}, {3.563913559982808*^9, 3.563913587937407*^9}, {
3.563913643129564*^9, 3.5639136454726977`*^9}, {3.563913893811902*^9,
3.5639139485590334`*^9}, {3.5639139840870657`*^9, 3.563914064888687*^9}, {
3.5639141429901543`*^9, 3.5639142000144157`*^9}, {3.563914269810408*^9,
3.5639142840542226`*^9}, {3.5639143487949257`*^9, 3.563914404738125*^9},
3.563914455294017*^9, {3.56391451899066*^9, 3.5639146165662413`*^9}, {
3.5639146469249773`*^9, 3.56391465099021*^9}, {3.563914684638135*^9,
3.5639146860572157`*^9}, {3.56391471638395*^9, 3.5639148044359865`*^9}, {
3.5639148449423037`*^9, 3.5639148622662945`*^9}, {3.5639150099297404`*^9,
3.563915010347764*^9}, {3.5639151494727216`*^9, 3.5639152487053976`*^9}, {
3.563915326603853*^9, 3.563915346531993*^9}, {3.5639157813918657`*^9,
3.563915788211255*^9}, {3.5639160749616566`*^9, 3.563916084421198*^9}, {
3.563916863145738*^9, 3.563916867956013*^9}, {3.563916974604113*^9,
3.563916998251466*^9}, {3.5639170471642637`*^9, 3.5639170731837516`*^9}, {
3.563917169124239*^9, 3.5639171692732477`*^9}, {3.563917225221448*^9,
3.563917281815685*^9}, {3.5639173866606817`*^9, 3.56391743454642*^9},
3.5639174785899396`*^9, {3.563917530621916*^9, 3.563917555013311*^9}, {
3.563917726810137*^9, 3.5639177280732093`*^9}, {3.563917953474101*^9,
3.5639180072371764`*^9}, {3.563918038582969*^9, 3.5639180432792377`*^9}, {
3.563918079533312*^9, 3.5639182234085407`*^9}, {3.563918264612898*^9,
3.563918265321938*^9}, {3.563918306125272*^9, 3.5639183204030886`*^9}, {
3.5639183512768545`*^9, 3.563918397598504*^9}, {3.5639186015911713`*^9,
3.5639186261025734`*^9}, {3.5639188701865344`*^9, 3.563918974285488*^9}, {
3.564081080539436*^9, 3.5640811343645144`*^9}, {3.564880574348827*^9,
3.5648805849744344`*^9}, {3.5648807151418796`*^9, 3.564880717960041*^9}, {
3.5648808318375545`*^9, 3.564880834966733*^9}, {3.564880887672748*^9,
3.5648809435619445`*^9}, {3.564881002612322*^9, 3.5648810078276205`*^9}, {
3.564881058793535*^9, 3.5648810605646367`*^9}, {3.564882586727928*^9,
3.56488258833002*^9}, {3.5648826193637953`*^9, 3.564882626198186*^9},
3.5648828797036858`*^9, {3.5668460139647665`*^9, 3.566846039283215*^9}, {
3.5679698042792788`*^9, 3.567970064740176*^9}, {3.5679725677883425`*^9,
3.5679725728876343`*^9}, {3.5679726662889767`*^9,
3.5679726673010345`*^9}, {3.567973103120962*^9, 3.5679731107233963`*^9}, {
3.567973168371694*^9, 3.5679732075859365`*^9}, {3.56797329802411*^9,
3.567973310597829*^9}, {3.567973369819216*^9, 3.5679733855401154`*^9}, {
3.5679734907991357`*^9, 3.5679735486114426`*^9}, {3.5679735856015577`*^9,
3.56797358965279*^9}, {3.5679736388876057`*^9, 3.5679737353241215`*^9}, {
3.567973792365384*^9, 3.5679737986407433`*^9}, {3.567973868360731*^9,
3.567973898430451*^9}, {3.5680504360721536`*^9, 3.5680504883531437`*^9}, {
3.5680607069186125`*^9, 3.568060711435871*^9}, 3.5680610124290867`*^9, {
3.5683871389194546`*^9, 3.5683872031381283`*^9}, {3.5683872412343073`*^9,
3.5683874117150583`*^9}}],
Cell[BoxData["0.4`"], "Output",
CellChangeTimes->{{3.5683872259074306`*^9, 3.5683874123500943`*^9}}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJwVlHs41GkfxsehpnU1W5RCNlLtRtaamtVu5PvNmSIm8evAltMMOQ7aEpPS
a8sIrU21lcOGdil6qRx6pbFS2uTQmd4VbfKbzDyOTWOavL/3j+d6rs91P899
f58/7mdZSBw/XJvFYkUw6/+7Ra7mYuFSqaNucm7R2bM0eDWxfYYEM2CQI1YF
GMugg2P3mW7QfLT7enLtnXsycMp1vX1pixHGrsyZehD5DsK/meZwOeaY8MLp
TKbqHXhbho8tcl+Bb9JCTAeOjEDN47Tk9u9WYXWyV0XE+AjYG1hV6x6yxnX7
vDYu2CkHgfrnC2WULUqGkmTFtXKIa3u7ttp7Der314p91XLI2jF7pSaah9z4
3cseOSog9O7BCK7QDi1W57/MT1aAlG3st3f7d7jri8Co3FIFcPXTC+ik9YjR
hWlzuxWwe2KDtU+0A14WvOG4TymgpPCOqfKEI5buKg/OW0ygNmd9Xw8fMaTC
9eALHoGkxg2+FzZvxPJI3mTrZgLN98vGj+90wlicpScOJRDp/n1TJOWMaVrL
d87bR+D879zre6NccOLpmNXlnwicnGg6HP+jK16R9l+7XUBgqCJ5n1Dkhpeb
YruNLhJodfv5zJEj7lhzkJ3wtIqA1pbewdx0DyxRdEWJ6gmwNt7QKj7giccP
jYdJbxM4tljp3fOTF37siNa9co9A/I7QFmXGJjRAaahVJ4GBw7wwOLUZ46Kr
2gKeEFiYf7b3eIk3LuxOMb3YS6B8vtWBu+d8UBpcEa/+m4BUZOb6VeUWlBsu
KDB7TaDQvNh0g78v7vgn+tTRIQJNqdMsYZcvtujgrGSawLJN7I/LA/0wyM8q
0XmEwLVOS8mLx35I5PCfPAWB7LZPtuZBfAzU6eG0jBLIT6Sjdr/k41WVy5qc
cQKphkvnWWzfino5jdmmkwT+sJx1P+nVVkx4tqTszBSB2ZNaxtJgf+xbN0fQ
9Z7AJdt/iwvf+mOYke0KlZKAZUiFjyZmG5bcUGuUHwj0eTbUbHu3DYdK0KJd
RaDnYsrXkBiAjTGJWXnTBD7U+jlYjAfghQ/iuTw1gZl60fXM2ECsLWdXShne
ZOvmmjoViPuf+w54fCRwN+ibyL2JFN6zlj+vY7jqarxyZobCVY1s8QoNgfsn
+xKGBQQ49sHy0G4azDV15zV2c9AkTtjcGSeD9Wzfq9cbKMxyNOGMMvfb12c0
jAj6wXD1PvO2GhoG5f/ds39KBzNOal0izjJIr2nOziugcGHW2bjHzHmjP1Oc
5SeUwJJk4ocJGiZ3vnrU+5JCn5LbDXpM/r3sHo8pQSfw5m08FFFGg8tQfOv1
x1qo1I5fHWMjgxXHlNOaoxR6cuXObYzfJ1ferdHiCUgRlFU4D9Jwmmvk5PEX
hcNmWoc1jH76tI+AnHgLfXyXX9KlNPhl/h4eo6Aw9amwfjGT12abIJgtbIaY
beUqzyIakkIak/1bWbj6y5jKnuUyeC9aUMNLpRAfCBc1M34i9smDoooxiPve
4NmNFzQITXkqcQuF9V0ZD98zuthkzuB48Wvg/+KN6gYaLBJaTUvfUFha5Yb6
TF76uewqOyWFwtmeFksZlu6vKl0lrIa31vhX6Hkass1/eLjcgYX5/UWNeUtl
ECws4XT9SKE97/KBm4y/tRB2rK0eBX7x1if/ekJDt36Lv8ktCldKq+ImGH2s
L6woqWIAHAbnuwXcoEESwd8PAxQece75xGHyhvNM9HrGKTz9uRkxYXhx+Sf+
OTWFOmqZ3zKG6+ZYmsUIi2DAeNFX6l9p4M6ETC0anYExz8AH40tkYBAqvHkh
mUKxR8cfDUzesTMF7fncUTgcWzAhekRD5tzj2sM3KYy++vLWGKNXOiwQf1v9
Cp6d+ixbco0G3GP8JaefmTeoaddcJu+8ZKCuaJTC2Fvf+hsz/KD4DitSRWFa
U1ajGcMhlevKOjTM+9lRwxYMlz4nvRIbC0xZkqn3p+MI7DpXUy+xWYNHM6dV
fe/lEOElz+h2tUfKPizc8JUC6j/mX5LYOOEel6equh8IbPDnnrBpdEPTzZnF
3HICLZUPRd2um1C7ZvJ1XgcBd51oKql7C3bMW6v6jfkvIq7oFkls+GiYUWOr
zfR91fZH+kFJ/rimRYMzTH9lur8dtWkMwM5f28ffMX38H0ThNu4=
"], {{{}, {},
{RGBColor[0, 0, 1],
LineBox[{1, 83, 74, 66, 59, 54, 88, 79, 71, 64, 51, 86, 77, 69, 62, 57,
2, 84, 75, 67, 60, 55, 52, 3, 4, 5, 93, 6, 7, 8, 9, 94, 10, 11, 12, 13,
14, 95, 15, 16, 17, 18, 96, 19, 20, 21, 22, 23, 97, 24, 25, 26, 27,
98, 28, 29, 30, 31, 32, 99, 33, 34, 35, 36, 100, 37, 38, 39, 40, 41,
101, 42, 43, 44, 45, 102, 46, 47, 48, 49, 85, 76, 68, 61, 56, 53, 87,
78, 70, 63, 58, 89, 80, 72, 65, 90, 81, 73, 91, 82, 92, 50}]}}, {
{RGBColor[0, 0,
NCache[
Rational[2, 3], 0.6666666666666666]],
PointBox[{93, 94, 95, 96, 97, 98, 99, 100, 101, 102}]}, {}, {}}}],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox[
RowBox[{"\"S\"", "(", "t", ")"}], TraditionalForm]},
AxesOrigin->{0, 0.8},
Method->{},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.5683872259074306`*^9, 3.5683874123700953`*^9}}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJwVlHs81Ikaxqdi6KKjO47LuKyDOpqfQaX0vkvu5R4/lZJxGaE0OFSIlMhY
g0jrLpKyKbcJy5gxkdalZGuj1uV0Ye3IkibW5Dh/PJ/n/+/n+T6avmdc/VdS
KJRzy/l/a6VLbxWqC/ZvmSTUzNd0gn2LnOOHwCUwiBvmrFZshx4F09Uy3oqo
alIpd1DMB4t0q7YKJyVsazMAXXYz+O9cUCAUaMilJjTeeMWDQ/r+f2210cG3
kNI5w62DmoHYyK7derhyV2llmeQh7N1oUC1zcQfG3LnXM6pSDYF/ZxaUk3Q0
/TKyxXH1PTjT8ZFRfcgIfcwKttrxK+DaEep30hBjtP9kez3udhkwOy8EECxT
bJTlJXlrl4JATtkl2Gs3epb2vL3+pQiIDfE5ExFm+Htd8dGckTzwmTXf4Riy
DzV3rDI5zcmFksLHqpK0/egSy88o98+G2h/MhvpdERPVw3vs6jIhosncueDg
96jITW5XTOAC/2n5TMpRCwyLzPNuf8GBIJs9LUGkJV6M+O9VMSsF8u8Q9cGn
DmDxqDHxp0ESZMy2JIRFWeHO3TmlGn6J8OFu5H9YbGtcW1PgaKSeACLrzNxL
l2zw1GdVtJuIhRVOg2Pp8baYo7y/Yv2J80D5vmFF8Tk7NDBLCwxxioLkbZJD
/VftcWxPK9/NLwLCjjCFkkQH7EsseU+jsGE0wdgPsg+iW8nkVGT4GdicdXMw
peQQ1lbm67SkBsNtRYNznXmO6FznIOr3ZIGArWH1r3tOGFUaOeRm7w+FtGJV
c3dnfKXLF/O6fKElZoHCeuaM8i2G5TJFPqDpILeo7emC76TdN39W8Ya6Pv3U
1wMuOC4PkwP1XsDp+EanebviQp1Brs55D8gKnzjl88YVdYJ/el38wg1itqj/
Q8vLDbOe0eV2JbtApb7s04gRN6wh6/XPVDsC9fMKZcFxdxRtU73wdZsDVNAf
xhV+dMcP57wXn1TZgL7vXUdp6GFc9avzLs2WAzBk11hzePIwzprOn7Vzt4D+
W+f/DeEeuJ7r16onj/C11mWf1owH1rxhNj132AdLj9j1Sac9MXNSM/eU/B5w
oFtbxcx5Yt3JsI8//2ECnd47g4LDSWzy/xSid4wB9x+ESZaWSHSdCCyzHKLD
04yhs+OBn0DRNrRQdlgENCkvX2oqj3vmdcfn/QWQ3Nvy7rDHZqR6Fzakc1uA
KlGdkjFRxez62u1q3Ebwqqpe0jbQQr0OLytZrQYwk3N+UN9IomLvL28LFY2g
yyyx8c/AYbAUrvPT/fgYxsRvT0bPrUJxW/qadCMhGEzNf6ny2ojNG0pa7Bpa
QceS8PSwUMFomyC3yxeaYFg8kHT3n5qoOf7jS7GkAeJr+BxuDomrtqtxkmqN
QKn9vKU4TQIa5uYJ7eJ28F6X+epS9DqkzY0Nfq1og89HR14MviFRR9p40jKc
gCecftu5wD6I3er+RD6yAw58CBPVD6zAE/qjHNkiISxKt8WTRzegugzzyiUn
PjCCmtcu2SqjnVlC7PG5Jij9IfBp6HUaair72l4M4IFOsmRBepnEKWMbPzU5
BnyzMm6dLp6FtdpJakKmCFplvjNr81yDgxB010ZWADcIJQvbX0jczxi5YyEg
wCXpjn/oFIlL3EVqni4BHfSzgVQWH06mRt2439oBEb5Nke4iCubpPtw8/VII
72QrDhi+UcT4K+1vnhXwwSyGEuDWrYSbsseyfRnNIDNMD+lzpuGsz3bNxkIe
fGFvqjGOIbEzg/MtnGAAWy7jAvvuX9ANY9y6YhF8ij89edxmNYri5Jl0EwGw
VI3n44QkxlZtbRONE6B1VqRa9n55P3499aKDBMTnce6bSkikb7a78ZhCgCD6
fpkeqxp+P9oQvetdB3BoJ3q191FQwX6W4TErhN9SpnRv5iviVa1gG9ZjPrTK
amdJ05Tw0YKHSZVrMxhf3WJO2UlDy5cB5ZuaeXCcVaLwLIrEhouLwUJrBuxg
wRFG9TQwRQnMB3wRyMOmA4b8ZRF8Mq5FHxLA8w1Cd5VWEsu6VdpuLxKQGuAa
DaMkxrigz/wJAsa5Kmv6Z0i8uV7jRfkmArbd/uaa9zeJWbG8vQtiOvDk9TVC
WUVgPZnDNZB0ALHkO7d1egn8F45o3l7RDv0OG3N7Y5Z5r+m+5vyaD/H2dZX9
p5VQnJOpw/RthoNDV8uV1GnYfyw6yrmLBxuZrOaCSBInWtSi2S4MSM7N6coi
psEpPqjBqU8Emwv9p7dckEfLzuCVNV4CSFqXsnK8mcSXzIHVxVQjwJPKugrD
JOa4FtflBRGQnzrKK5omcWaU262mRkB38WNK0DyJtfOfHb0ldPC9t6u8R0pi
aG2XV/47OhzLq3mUamiEhftGsgpmKyDAXpz43Govvu9T1piJ+xEeLWZVpBpa
4K2oM79euZIG5u5EmmGTNa6ccug15MSD8F4v+7mVA+ZX2nlQb7DBZlUIGfHc
CYMYnyuiJ/wg4CeZolRDV6QqOU8pZHuCnteLDd4R7lhbla37NM0e/pApvWzY
tPxXnkavNebMoey3T4OphlpI7UUFgXoD/A8fV3LA
"], {{{}, {},
{RGBColor[1, 0, 0],
LineBox[{1, 99, 87, 76, 66, 57, 51, 105, 93, 82, 72, 63, 2, 100, 88, 77,
67, 58, 52, 106, 94, 83, 73, 64, 3, 101, 89, 78, 68, 59, 53, 4, 102,
90, 79, 69, 60, 54, 5, 103, 91, 80, 70, 61, 55, 121, 6, 7, 8, 9, 112,
10, 11, 12, 13, 14, 113, 15, 16, 17, 18, 114, 19, 20, 21, 22, 23, 115,
24, 25, 26, 27, 116, 28, 29, 30, 31, 32, 117, 33, 34, 35, 36, 118, 37,
38, 39, 40, 41, 119, 42, 43, 44, 45, 120, 46, 47, 48, 49, 104, 92, 81,
71, 62, 56, 107, 95, 84, 74, 65, 108, 96, 85, 75, 109, 97, 86, 110, 98,
111, 50}]}}, {
{RGBColor[
NCache[
Rational[2, 3], 0.6666666666666666], 0, 0],
PointBox[{112, 113, 114, 115, 116, 117, 118, 119, 120, 121}]}, {}, {}}}],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox[
RowBox[{"\"E\"", "(", "t", ")"}], TraditionalForm]},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.5683872259074306`*^9, 3.568387412379096*^9}}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJwVlnk01esXxo0hZM4xJEMDhYgkcfe+MhOZDyKJHGTMnFxzJJLM4znniwxd
SulKKUMTSZGrhFRXKjJEhnLwO78/3vWuvfZaz3rX3p/nWa+cR6CNFxsLC8tD
5vn/LX95jSiTaf9jdlPCjv+ic8CslctywnsDTHcVavruocMLfi0eDldBjOrw
vSlaSID+ZcO2a1Yk7Nz9THE8lg5e+37zq/PL4juXV9zezVQ4quT1Y6vxDpQx
SLcXci+FxoHzYV3aiqgVoChYMFAIh4X3NHD8pYz7vjodHvDOA+/V7NJKshqq
6dOSjaKuQuCTLxoNR/ejZo0pw1X8Clx03rRz7Ywmdmi1OejdzIBTT8+dVqdo
YYWsU1s2/0Vo55Kw9nPSxkLP0vrVmRRQF4rL+xaqg6YpCh9vrSaC+4KesuUZ
XQy8Xy7tnhsPtLLH0ssZf6BA82svHVos3MrUGe63QYyzc9st1RENoS16x0ot
/sTZqeo3+oUR8LC7cj7NRR9tRhX1QwtDwcf4UKsP+QgSjs1uEbtCoKRavcnP
1wAh2d50R3UgXFlojQ+KMMShwM+5PfV+MFEbFk4JMULutOcOXgEUeGSUXZCQ
YIzmHmaRDAcvYLV69+lynAk6K+Z+iHjpASx/3mGlRpkiH8vpPzrK3SFVfPlo
/wUzvCjtt7ta1BWCnE91LCeaY2/Xr4nbtU7wMV7TE3ItkDpi9TjFzwFErxa+
S6MdRfn4He0WdFuoEtwT9bTYEoNF6uSjnKyhPWS74e46K9zX2mdIJltCmSxV
Ws/uGPovB+d2PzGD1pjfLJRXxzB47YDf2wZjkDPnYig4WuNQqqxCy30DuP1S
KX1owBofKHYreVnrw6Un62qyrjaYqVJ64S92hKtnv/m6j9hgY0tM8CToQoyY
jIC8ky2OOfZsefBbG2qUOLtDP9hiX/3Qi5XhA7DpJ6tEu5sdVn7ifjZooQHX
1G7Gln2xwzMD8SkWo2qg5FFrueZvj1rnbLyL01Vg2PRuo/2UPU4SDJU70nug
n4hWgbMOGLR65WXT4C5YuWWtKz/vgJm29cU5u3fARnNIU0qAI9Y/P2YfPSAH
5mpGhjGLjsgQ2Gf8SXs7PHXd5+N3loxTk9VVmCMF9TeCljc2yJjYLhmhxk6C
7ivDwV+9Z0HerdfdfrgMZNf+KVnT4sYspVGKtB8Bqb2t4/YOohjSpHkkSIOA
TcvSMxwHpPHDNteFnxU00OE6dqPpLhm1BTfw4z0J6NJJvPvdewz80gdecQcU
wafp0ZORi+yoMX7Nq2uJDntmfi1ddxLGHhFR8z1nCdhxRN3RQV8Spxv9zrqJ
0SGu8eGlrDwyMtxNyuYJSSB1Rh+ZzliGAhf6vD8PDVz5st8kRPLhV92U1rfF
BHyuj+9ft9mKM7sGj1p/oMNPlw+v342QUa1z2rNlmATPLvWbLHq/hFteev9+
q80Hg4mgR00DrLh/7zkx8VI6MNbE48guQmhfvfNrbxoBGj73eDdMJNAg7b8s
JXM67Ehd/r2WRMba3LvP+KSkYN1Q88EcdQGsGFlj9y2o8IBjp06b42Y02iY+
0X+RgDsPyl1q7cSw+sc4/yIvAfnqJH2T52QUvBav/a+ZBOTnW3rPZnyBkIbF
oI2XJRC/aLahs3UTSt7MtsnUIcDp/bA/K1kEhSqi/cUdCFDH9mffolchPpr7
r5RrNGCIbIQaFm7Bh6rCMrxUAqxTqr38Z8i4lKPXlRJAgidqwd6bKA8hZTlS
wEIuD0I9WsLsHrEgK7vPkqg3HcY5rxmojgjil8vpzgHZBOjEsJy27SEhZ7b0
VisvOiyFiDRqxpBxRc3wu4ejFIRwXTkXUvsDpl5X5cV1lsNsXMCUmzEPav5R
eXs2hoDyJ6qycf+KYpC3bf2fsgRQpDV/xXaQ0edpRrJ0ogTESnJ/mqf+B+yR
49+jaouhMTjnxhAnJ56se+yqK8XM2wnf/W/eCqPwKw89dy8CKlhlUvySfoF8
zEKB6HEaKGeZ7BpP5cd1lXHP4HIC5IMfSVd8JuOg66LNeAUJ8nCpfiHjDZQ7
5VjZSBSCiO9uEfHPbGhh4f9ipIcOIkup9xLeCaHGWvgr8l8EpCe9YQnMXwT9
hWg++QYqZKYOp8pReJG6vcCbN5eAY1GsliW7uFBij1aciD0BQYMWNXvfiCD1
w/vtvoYEPIj15KUEr0HtleaXyt9p8Dy/qbOqRgAz1G7ThksJiCu+VK+1TMZ6
8S0JVG0StEfWVyhSGsApybi/2zoXLsme6FXQZcG695opxaZ0eJs2s6uwRBBD
H8m+Z8tj6nMqXF3LIGGKfn6ocggd3Cg0/lcRZEyWT+lqC5MCZQo4azTMwaf+
84c6rMuBG0QMVB9y49dkTd/UUAJyzMLZpnJF8d3eJuF1JQL6hDrsJB+Q0bkk
cHdguQT8GPYsD639CHv3vxrVECiG7n2HeGrOcyCbS7PpdR4CtHwbRfULhVE0
4ftE+BkC3Dx6PJXTVuDvpN6xeg0aGFhOx95i4cfDB1nNucuY8zxtEwkfyTi+
nKGFbSQ439mgtEx9DedvhX708yoAZcUev4njbKjl07f1XhMduKNflU4XCaEZ
xaq5J4kAg8/JY/tKfsIlCufJ37FUqDKK+zg3thldg1tU3LOYPB2sqvIr24QU
p3kNLxMCPJ1z0vPyRbDxEv/g1FECIseEJxXDGcCqIP79ejcNxu2dpcPlBLDJ
OEzFlMnL1yzJzf3zZPxhfaMvyZYExyvEtiVbsOKBlmm98QQ6zMWf8OiUEkKp
etEsl0wCBju6si+/5EEpn7gVZ+b7im7NOm7O5ETsXjiQtJcA0X7ihajQFqxT
PNwpyfRfeLeWms0cL6Ye9OYYKSBA+97xxZ56LkwUtmQh3AkYOpPaNEUSxCLj
bqdnzLwSr1q3KV4l41bR9ptD20jwD7fSdn9KOTz2SS4w+pID6hsei1vnNsA3
YnuTjg4d+s2FC3pjBHGkw8uzJJ/Jl9ntmv4AEobZv5bOiKSD8CnKvdIwMi4+
jQxnJElBakFe11X1OShUmRhSEC8H0TKvObFz3Fjd6pu+EEhAJl/RWdlwUbzA
uU5tUyUghS+N7es9Mu4LpupX/C0BdboisQcaPkBIQQnN9WERDGamN2Ud4kA7
8akPXiwEqCkPJkdECaNbVcThUabevWyFgUu8K3DDPfJmtwwNjv0Ne4vv8+Fq
9MEHPEw/4EmJXfxjZGxNGYr/9YIEc0l8XyJr+0DTx4XCylMA2hdkSL0kNmQP
/rG9qIYObLo/tyicE8KGf5bx+AUCaGKjllkyP+FngInL9tNUaKzsz3hbvBkn
5ei2dzIICM1bsbF13oTn/CsTyv9k8irdzHgeIYIVeyxy+WwIGBDwdUpbWYWy
1Spzq7s0mLt9/Znr6BY8HXmTvY3JR0n6x3/K58h4X25GjO0kCSjslK4z3KzY
19XErh5Gh8kjia9XVgVR7H5uRCiTx09y0hCRzoPfzrpbPIojoEpYn2PelBN9
aLY1qQoEyKovRTF6+PGELwt1lKmfoJQ2cug6L7oGLJVuYe7PQLKBdtuXC8dN
tTPXnZl+1z4l/nBaALXTE90nSgjooT5m8flFxobJc2cO7SXB+6fdTafuC6Lv
yrM6kxwCGGNt+UbsPLiz0kBqJJLJ22xR/3MDfsyfH9f5l+nHoi8qB3h28KJH
t9nFPma+v13iCsr0EsDibSdCrjH73Get5VTst2Dft9xKJSa/vn7jib6afCjE
mAoOLSLAVu/E2LKOIP4oWdBJYNYedQcrX6yR8Y7xD8d4QRJUvJ19l64qjzUM
ifb9nuVwvLixOV11P5rdmSkw1LsCp82mE/sMD6PyxVZKByMBmhlXr6Wr6qPd
2LrPMikM9OzUM1RbjJj/iySsKPWGjrrekD5Dc6yxCWuVSXAGY/Yz5NA+K9zy
a/aqdu9ROP03R3m6qg1+CrJ1knuBoOj0Wsg11A4T2TofnZrcD5Mc9CTVFgeU
0525ddVhJ/wPS4Vw5A==
"], {{{}, {},
{RGBColor[0, 1, 0],
LineBox[{1, 139, 105, 80, 65, 154, 120, 95, 56, 148, 114, 89, 74, 51,
144, 110, 85, 70, 157, 123, 98, 61, 151, 117, 92, 77, 161, 127, 102, 2,
140, 106, 81, 164, 130, 66, 155, 121, 96, 57, 149, 115, 90, 167, 133,
75, 159, 125, 100, 170, 136, 52, 145, 111, 174, 86, 166, 132, 71, 158,
124, 176, 99, 169, 135, 179, 62, 152, 118, 175, 93, 168, 134, 178, 78,
162, 128, 177, 103, 171, 137, 180, 3, 141, 107, 173, 82, 165, 131, 67,
156, 122, 97, 58, 150, 116, 91, 76, 160, 126, 101, 53, 146, 112, 87,
72, 63, 4, 142, 108, 83, 68, 59, 54, 5, 182, 6, 7, 8, 9, 183, 10, 11,
12, 13, 14, 184, 15, 16, 17, 18, 185, 19, 20, 21, 22, 23, 186, 24, 25,
26, 27, 187, 28, 29, 30, 31, 32, 188, 33, 34, 35, 36, 189, 37, 38, 39,
40, 41, 190, 42, 43, 44, 45, 191, 46, 47, 48, 49, 143, 109, 84, 69, 60,
55, 147, 113, 88, 73, 64, 153, 119, 94, 79, 163, 129, 104, 172, 138,
181, 50}]}}, {
{RGBColor[0,
NCache[
Rational[2, 3], 0.6666666666666666], 0],
PointBox[{182, 183, 184, 185, 186, 187, 188, 189, 190, 191}]}, {}, {}}}],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox[
RowBox[{"\"I\"", "(", "t", ")"}], TraditionalForm]},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.5683872259074306`*^9, 3.5683874124010973`*^9}}],
Cell[BoxData[
GraphicsBox[{InsetBox[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJwVlHs41GkfxsehpnU1W5RCNlLtRtaamtVu5PvNmSIm8evAltMMOQ7aEpPS
a8sIrU21lcOGdil6qRx6pbFS2uTQmd4VbfKbzDyOTWOavL/3j+d6rs91P899
f58/7mdZSBw/XJvFYkUw6/+7Ra7mYuFSqaNucm7R2bM0eDWxfYYEM2CQI1YF
GMugg2P3mW7QfLT7enLtnXsycMp1vX1pixHGrsyZehD5DsK/meZwOeaY8MLp
TKbqHXhbho8tcl+Bb9JCTAeOjEDN47Tk9u9WYXWyV0XE+AjYG1hV6x6yxnX7
vDYu2CkHgfrnC2WULUqGkmTFtXKIa3u7ttp7Der314p91XLI2jF7pSaah9z4
3cseOSog9O7BCK7QDi1W57/MT1aAlG3st3f7d7jri8Co3FIFcPXTC+ik9YjR
hWlzuxWwe2KDtU+0A14WvOG4TymgpPCOqfKEI5buKg/OW0ygNmd9Xw8fMaTC
9eALHoGkxg2+FzZvxPJI3mTrZgLN98vGj+90wlicpScOJRDp/n1TJOWMaVrL
d87bR+D879zre6NccOLpmNXlnwicnGg6HP+jK16R9l+7XUBgqCJ5n1Dkhpeb
YruNLhJodfv5zJEj7lhzkJ3wtIqA1pbewdx0DyxRdEWJ6gmwNt7QKj7giccP
jYdJbxM4tljp3fOTF37siNa9co9A/I7QFmXGJjRAaahVJ4GBw7wwOLUZ46Kr
2gKeEFiYf7b3eIk3LuxOMb3YS6B8vtWBu+d8UBpcEa/+m4BUZOb6VeUWlBsu
KDB7TaDQvNh0g78v7vgn+tTRIQJNqdMsYZcvtujgrGSawLJN7I/LA/0wyM8q
0XmEwLVOS8mLx35I5PCfPAWB7LZPtuZBfAzU6eG0jBLIT6Sjdr/k41WVy5qc
cQKphkvnWWzfino5jdmmkwT+sJx1P+nVVkx4tqTszBSB2ZNaxtJgf+xbN0fQ
9Z7AJdt/iwvf+mOYke0KlZKAZUiFjyZmG5bcUGuUHwj0eTbUbHu3DYdK0KJd
RaDnYsrXkBiAjTGJWXnTBD7U+jlYjAfghQ/iuTw1gZl60fXM2ECsLWdXShne
ZOvmmjoViPuf+w54fCRwN+ibyL2JFN6zlj+vY7jqarxyZobCVY1s8QoNgfsn
+xKGBQQ49sHy0G4azDV15zV2c9AkTtjcGSeD9Wzfq9cbKMxyNOGMMvfb12c0
jAj6wXD1PvO2GhoG5f/ds39KBzNOal0izjJIr2nOziugcGHW2bjHzHmjP1Oc
5SeUwJJk4ocJGiZ3vnrU+5JCn5LbDXpM/r3sHo8pQSfw5m08FFFGg8tQfOv1
x1qo1I5fHWMjgxXHlNOaoxR6cuXObYzfJ1ferdHiCUgRlFU4D9Jwmmvk5PEX
hcNmWoc1jH76tI+AnHgLfXyXX9KlNPhl/h4eo6Aw9amwfjGT12abIJgtbIaY
beUqzyIakkIak/1bWbj6y5jKnuUyeC9aUMNLpRAfCBc1M34i9smDoooxiPve
4NmNFzQITXkqcQuF9V0ZD98zuthkzuB48Wvg/+KN6gYaLBJaTUvfUFha5Yb6
TF76uewqOyWFwtmeFksZlu6vKl0lrIa31vhX6Hkass1/eLjcgYX5/UWNeUtl
ECws4XT9SKE97/KBm4y/tRB2rK0eBX7x1if/ekJDt36Lv8ktCldKq+ImGH2s
L6woqWIAHAbnuwXcoEESwd8PAxQece75xGHyhvNM9HrGKTz9uRkxYXhx+Sf+
OTWFOmqZ3zKG6+ZYmsUIi2DAeNFX6l9p4M6ETC0anYExz8AH40tkYBAqvHkh
mUKxR8cfDUzesTMF7fncUTgcWzAhekRD5tzj2sM3KYy++vLWGKNXOiwQf1v9
Cp6d+ixbco0G3GP8JaefmTeoaddcJu+8ZKCuaJTC2Fvf+hsz/KD4DitSRWFa
U1ajGcMhlevKOjTM+9lRwxYMlz4nvRIbC0xZkqn3p+MI7DpXUy+xWYNHM6dV
fe/lEOElz+h2tUfKPizc8JUC6j/mX5LYOOEel6equh8IbPDnnrBpdEPTzZnF
3HICLZUPRd2um1C7ZvJ1XgcBd51oKql7C3bMW6v6jfkvIq7oFkls+GiYUWOr
zfR91fZH+kFJ/rimRYMzTH9lur8dtWkMwM5f28ffMX38H0ThNu4=
"], {{{}, {},
{RGBColor[0, 0, 1],
LineBox[{1, 83, 74, 66, 59, 54, 88, 79, 71, 64, 51, 86, 77, 69, 62,
57, 2, 84, 75, 67, 60, 55, 52, 3, 4, 5, 93, 6, 7, 8, 9, 94, 10, 11,
12, 13, 14, 95, 15, 16, 17, 18, 96, 19, 20, 21, 22, 23, 97, 24,
25, 26, 27, 98, 28, 29, 30, 31, 32, 99, 33, 34, 35, 36, 100, 37,
38, 39, 40, 41, 101, 42, 43, 44, 45, 102, 46, 47, 48, 49, 85, 76,
68, 61, 56, 53, 87, 78, 70, 63, 58, 89, 80, 72, 65, 90, 81, 73, 91,
82, 92, 50}]}}, {
{RGBColor[0, 0,
NCache[
Rational[2, 3], 0.6666666666666666]],
PointBox[{93, 94, 95, 96, 97, 98, 99, 100, 101, 102}]}, {}, {}}}],
GraphicsComplexBox[CompressedData["
1:eJwVlHs81Ikaxqdi6KKjO47LuKyDOpqfQaX0vkvu5R4/lZJxGaE0OFSIlMhY
g0jrLpKyKbcJy5gxkdalZGuj1uV0Ye3IkibW5Dh/PJ/n/+/n+T6avmdc/VdS
KJRzy/l/a6VLbxWqC/ZvmSTUzNd0gn2LnOOHwCUwiBvmrFZshx4F09Uy3oqo
alIpd1DMB4t0q7YKJyVsazMAXXYz+O9cUCAUaMilJjTeeMWDQ/r+f2210cG3
kNI5w62DmoHYyK7derhyV2llmeQh7N1oUC1zcQfG3LnXM6pSDYF/ZxaUk3Q0
/TKyxXH1PTjT8ZFRfcgIfcwKttrxK+DaEep30hBjtP9kez3udhkwOy8EECxT
bJTlJXlrl4JATtkl2Gs3epb2vL3+pQiIDfE5ExFm+Htd8dGckTzwmTXf4Riy
DzV3rDI5zcmFksLHqpK0/egSy88o98+G2h/MhvpdERPVw3vs6jIhosncueDg
96jITW5XTOAC/2n5TMpRCwyLzPNuf8GBIJs9LUGkJV6M+O9VMSsF8u8Q9cGn
DmDxqDHxp0ESZMy2JIRFWeHO3TmlGn6J8OFu5H9YbGtcW1PgaKSeACLrzNxL
l2zw1GdVtJuIhRVOg2Pp8baYo7y/Yv2J80D5vmFF8Tk7NDBLCwxxioLkbZJD
/VftcWxPK9/NLwLCjjCFkkQH7EsseU+jsGE0wdgPsg+iW8nkVGT4GdicdXMw
peQQ1lbm67SkBsNtRYNznXmO6FznIOr3ZIGArWH1r3tOGFUaOeRm7w+FtGJV
c3dnfKXLF/O6fKElZoHCeuaM8i2G5TJFPqDpILeo7emC76TdN39W8Ya6Pv3U
1wMuOC4PkwP1XsDp+EanebviQp1Brs55D8gKnzjl88YVdYJ/el38wg1itqj/
Q8vLDbOe0eV2JbtApb7s04gRN6wh6/XPVDsC9fMKZcFxdxRtU73wdZsDVNAf
xhV+dMcP57wXn1TZgL7vXUdp6GFc9avzLs2WAzBk11hzePIwzprOn7Vzt4D+
W+f/DeEeuJ7r16onj/C11mWf1owH1rxhNj132AdLj9j1Sac9MXNSM/eU/B5w
oFtbxcx5Yt3JsI8//2ECnd47g4LDSWzy/xSid4wB9x+ESZaWSHSdCCyzHKLD
04yhs+OBn0DRNrRQdlgENCkvX2oqj3vmdcfn/QWQ3Nvy7rDHZqR6Fzakc1uA
KlGdkjFRxez62u1q3Ebwqqpe0jbQQr0OLytZrQYwk3N+UN9IomLvL28LFY2g
yyyx8c/AYbAUrvPT/fgYxsRvT0bPrUJxW/qadCMhGEzNf6ny2ojNG0pa7Bpa
QceS8PSwUMFomyC3yxeaYFg8kHT3n5qoOf7jS7GkAeJr+BxuDomrtqtxkmqN
QKn9vKU4TQIa5uYJ7eJ28F6X+epS9DqkzY0Nfq1og89HR14MviFRR9p40jKc
gCecftu5wD6I3er+RD6yAw58CBPVD6zAE/qjHNkiISxKt8WTRzegugzzyiUn
PjCCmtcu2SqjnVlC7PG5Jij9IfBp6HUaair72l4M4IFOsmRBepnEKWMbPzU5
BnyzMm6dLp6FtdpJakKmCFplvjNr81yDgxB010ZWADcIJQvbX0jczxi5YyEg
wCXpjn/oFIlL3EVqni4BHfSzgVQWH06mRt2439oBEb5Nke4iCubpPtw8/VII
72QrDhi+UcT4K+1vnhXwwSyGEuDWrYSbsseyfRnNIDNMD+lzpuGsz3bNxkIe
fGFvqjGOIbEzg/MtnGAAWy7jAvvuX9ANY9y6YhF8ij89edxmNYri5Jl0EwGw
VI3n44QkxlZtbRONE6B1VqRa9n55P3499aKDBMTnce6bSkikb7a78ZhCgCD6
fpkeqxp+P9oQvetdB3BoJ3q191FQwX6W4TErhN9SpnRv5iviVa1gG9ZjPrTK
amdJ05Tw0YKHSZVrMxhf3WJO2UlDy5cB5ZuaeXCcVaLwLIrEhouLwUJrBuxg
wRFG9TQwRQnMB3wRyMOmA4b8ZRF8Mq5FHxLA8w1Cd5VWEsu6VdpuLxKQGuAa
DaMkxrigz/wJAsa5Kmv6Z0i8uV7jRfkmArbd/uaa9zeJWbG8vQtiOvDk9TVC
WUVgPZnDNZB0ALHkO7d1egn8F45o3l7RDv0OG3N7Y5Z5r+m+5vyaD/H2dZX9
p5VQnJOpw/RthoNDV8uV1GnYfyw6yrmLBxuZrOaCSBInWtSi2S4MSM7N6coi
psEpPqjBqU8Emwv9p7dckEfLzuCVNV4CSFqXsnK8mcSXzIHVxVQjwJPKugrD
JOa4FtflBRGQnzrKK5omcWaU262mRkB38WNK0DyJtfOfHb0ldPC9t6u8R0pi
aG2XV/47OhzLq3mUamiEhftGsgpmKyDAXpz43Govvu9T1piJ+xEeLWZVpBpa
4K2oM79euZIG5u5EmmGTNa6ccug15MSD8F4v+7mVA+ZX2nlQb7DBZlUIGfHc
CYMYnyuiJ/wg4CeZolRDV6QqOU8pZHuCnteLDd4R7lhbla37NM0e/pApvWzY
tPxXnkavNebMoey3T4OphlpI7UUFgXoD/A8fV3LA
"], {{{}, {},
{RGBColor[1, 0, 0],
LineBox[{1, 99, 87, 76, 66, 57, 51, 105, 93, 82, 72, 63, 2, 100, 88,
77, 67, 58, 52, 106, 94, 83, 73, 64, 3, 101, 89, 78, 68, 59, 53,
4, 102, 90, 79, 69, 60, 54, 5, 103, 91, 80, 70, 61, 55, 121, 6, 7,
8, 9, 112, 10, 11, 12, 13, 14, 113, 15, 16, 17, 18, 114, 19, 20,
21, 22, 23, 115, 24, 25, 26, 27, 116, 28, 29, 30, 31, 32, 117, 33,
34, 35, 36, 118, 37, 38, 39, 40, 41, 119, 42, 43, 44, 45, 120, 46,
47, 48, 49, 104, 92, 81, 71, 62, 56, 107, 95, 84, 74, 65, 108, 96,
85, 75, 109, 97, 86, 110, 98, 111, 50}]}}, {
{RGBColor[
NCache[
Rational[2, 3], 0.6666666666666666], 0.33333333333333337`, 0],
PointBox[{112, 113, 114, 115, 116, 117, 118, 119, 120,
121}]}, {}, {}}}], GraphicsComplexBox[CompressedData["
1:eJwVlnk01esXxo0hZM4xJEMDhYgkcfe+MhOZDyKJHGTMnFxzJJLM4znniwxd
SulKKUMTSZGrhFRXKjJEhnLwO78/3vWuvfZaz3rX3p/nWa+cR6CNFxsLC8tD
5vn/LX95jSiTaf9jdlPCjv+ic8CslctywnsDTHcVavruocMLfi0eDldBjOrw
vSlaSID+ZcO2a1Yk7Nz9THE8lg5e+37zq/PL4juXV9zezVQ4quT1Y6vxDpQx
SLcXci+FxoHzYV3aiqgVoChYMFAIh4X3NHD8pYz7vjodHvDOA+/V7NJKshqq
6dOSjaKuQuCTLxoNR/ejZo0pw1X8Clx03rRz7Ywmdmi1OejdzIBTT8+dVqdo
YYWsU1s2/0Vo55Kw9nPSxkLP0vrVmRRQF4rL+xaqg6YpCh9vrSaC+4KesuUZ
XQy8Xy7tnhsPtLLH0ssZf6BA82svHVos3MrUGe63QYyzc9st1RENoS16x0ot
/sTZqeo3+oUR8LC7cj7NRR9tRhX1QwtDwcf4UKsP+QgSjs1uEbtCoKRavcnP
1wAh2d50R3UgXFlojQ+KMMShwM+5PfV+MFEbFk4JMULutOcOXgEUeGSUXZCQ
YIzmHmaRDAcvYLV69+lynAk6K+Z+iHjpASx/3mGlRpkiH8vpPzrK3SFVfPlo
/wUzvCjtt7ta1BWCnE91LCeaY2/Xr4nbtU7wMV7TE3ItkDpi9TjFzwFErxa+
S6MdRfn4He0WdFuoEtwT9bTYEoNF6uSjnKyhPWS74e46K9zX2mdIJltCmSxV
Ws/uGPovB+d2PzGD1pjfLJRXxzB47YDf2wZjkDPnYig4WuNQqqxCy30DuP1S
KX1owBofKHYreVnrw6Un62qyrjaYqVJ64S92hKtnv/m6j9hgY0tM8CToQoyY
jIC8ky2OOfZsefBbG2qUOLtDP9hiX/3Qi5XhA7DpJ6tEu5sdVn7ifjZooQHX
1G7Gln2xwzMD8SkWo2qg5FFrueZvj1rnbLyL01Vg2PRuo/2UPU4SDJU70nug
n4hWgbMOGLR65WXT4C5YuWWtKz/vgJm29cU5u3fARnNIU0qAI9Y/P2YfPSAH
5mpGhjGLjsgQ2Gf8SXs7PHXd5+N3loxTk9VVmCMF9TeCljc2yJjYLhmhxk6C
7ivDwV+9Z0HerdfdfrgMZNf+KVnT4sYspVGKtB8Bqb2t4/YOohjSpHkkSIOA
TcvSMxwHpPHDNteFnxU00OE6dqPpLhm1BTfw4z0J6NJJvPvdewz80gdecQcU
wafp0ZORi+yoMX7Nq2uJDntmfi1ddxLGHhFR8z1nCdhxRN3RQV8Spxv9zrqJ
0SGu8eGlrDwyMtxNyuYJSSB1Rh+ZzliGAhf6vD8PDVz5st8kRPLhV92U1rfF
BHyuj+9ft9mKM7sGj1p/oMNPlw+v342QUa1z2rNlmATPLvWbLHq/hFteev9+
q80Hg4mgR00DrLh/7zkx8VI6MNbE48guQmhfvfNrbxoBGj73eDdMJNAg7b8s
JXM67Ehd/r2WRMba3LvP+KSkYN1Q88EcdQGsGFlj9y2o8IBjp06b42Y02iY+
0X+RgDsPyl1q7cSw+sc4/yIvAfnqJH2T52QUvBav/a+ZBOTnW3rPZnyBkIbF
oI2XJRC/aLahs3UTSt7MtsnUIcDp/bA/K1kEhSqi/cUdCFDH9mffolchPpr7
r5RrNGCIbIQaFm7Bh6rCMrxUAqxTqr38Z8i4lKPXlRJAgidqwd6bKA8hZTlS
wEIuD0I9WsLsHrEgK7vPkqg3HcY5rxmojgjil8vpzgHZBOjEsJy27SEhZ7b0
VisvOiyFiDRqxpBxRc3wu4ejFIRwXTkXUvsDpl5X5cV1lsNsXMCUmzEPav5R
eXs2hoDyJ6qycf+KYpC3bf2fsgRQpDV/xXaQ0edpRrJ0ogTESnJ/mqf+B+yR
49+jaouhMTjnxhAnJ56se+yqK8XM2wnf/W/eCqPwKw89dy8CKlhlUvySfoF8
zEKB6HEaKGeZ7BpP5cd1lXHP4HIC5IMfSVd8JuOg66LNeAUJ8nCpfiHjDZQ7
5VjZSBSCiO9uEfHPbGhh4f9ipIcOIkup9xLeCaHGWvgr8l8EpCe9YQnMXwT9
hWg++QYqZKYOp8pReJG6vcCbN5eAY1GsliW7uFBij1aciD0BQYMWNXvfiCD1
w/vtvoYEPIj15KUEr0HtleaXyt9p8Dy/qbOqRgAz1G7ThksJiCu+VK+1TMZ6
8S0JVG0StEfWVyhSGsApybi/2zoXLsme6FXQZcG695opxaZ0eJs2s6uwRBBD
H8m+Z8tj6nMqXF3LIGGKfn6ocggd3Cg0/lcRZEyWT+lqC5MCZQo4azTMwaf+
84c6rMuBG0QMVB9y49dkTd/UUAJyzMLZpnJF8d3eJuF1JQL6hDrsJB+Q0bkk
cHdguQT8GPYsD639CHv3vxrVECiG7n2HeGrOcyCbS7PpdR4CtHwbRfULhVE0
4ftE+BkC3Dx6PJXTVuDvpN6xeg0aGFhOx95i4cfDB1nNucuY8zxtEwkfyTi+
nKGFbSQ439mgtEx9DedvhX708yoAZcUev4njbKjl07f1XhMduKNflU4XCaEZ
xaq5J4kAg8/JY/tKfsIlCufJ37FUqDKK+zg3thldg1tU3LOYPB2sqvIr24QU
p3kNLxMCPJ1z0vPyRbDxEv/g1FECIseEJxXDGcCqIP79ejcNxu2dpcPlBLDJ
OEzFlMnL1yzJzf3zZPxhfaMvyZYExyvEtiVbsOKBlmm98QQ6zMWf8OiUEkKp
etEsl0wCBju6si+/5EEpn7gVZ+b7im7NOm7O5ETsXjiQtJcA0X7ihajQFqxT
PNwpyfRfeLeWms0cL6Ye9OYYKSBA+97xxZ56LkwUtmQh3AkYOpPaNEUSxCLj
bqdnzLwSr1q3KV4l41bR9ptD20jwD7fSdn9KOTz2SS4w+pID6hsei1vnNsA3
YnuTjg4d+s2FC3pjBHGkw8uzJJ/Jl9ntmv4AEobZv5bOiKSD8CnKvdIwMi4+
jQxnJElBakFe11X1OShUmRhSEC8H0TKvObFz3Fjd6pu+EEhAJl/RWdlwUbzA
uU5tUyUghS+N7es9Mu4LpupX/C0BdboisQcaPkBIQQnN9WERDGamN2Ud4kA7
8akPXiwEqCkPJkdECaNbVcThUabevWyFgUu8K3DDPfJmtwwNjv0Ne4vv8+Fq
9MEHPEw/4EmJXfxjZGxNGYr/9YIEc0l8XyJr+0DTx4XCylMA2hdkSL0kNmQP
/rG9qIYObLo/tyicE8KGf5bx+AUCaGKjllkyP+FngInL9tNUaKzsz3hbvBkn
5ei2dzIICM1bsbF13oTn/CsTyv9k8irdzHgeIYIVeyxy+WwIGBDwdUpbWYWy
1Spzq7s0mLt9/Znr6BY8HXmTvY3JR0n6x3/K58h4X25GjO0kCSjslK4z3KzY
19XErh5Gh8kjia9XVgVR7H5uRCiTx09y0hCRzoPfzrpbPIojoEpYn2PelBN9
aLY1qQoEyKovRTF6+PGELwt1lKmfoJQ2cug6L7oGLJVuYe7PQLKBdtuXC8dN
tTPXnZl+1z4l/nBaALXTE90nSgjooT5m8flFxobJc2cO7SXB+6fdTafuC6Lv
yrM6kxwCGGNt+UbsPLiz0kBqJJLJ22xR/3MDfsyfH9f5l+nHoi8qB3h28KJH
t9nFPma+v13iCsr0EsDibSdCrjH73Get5VTst2Dft9xKJSa/vn7jib6afCjE
mAoOLSLAVu/E2LKOIP4oWdBJYNYedQcrX6yR8Y7xD8d4QRJUvJ19l64qjzUM
ifb9nuVwvLixOV11P5rdmSkw1LsCp82mE/sMD6PyxVZKByMBmhlXr6Wr6qPd
2LrPMikM9OzUM1RbjJj/iySsKPWGjrrekD5Dc6yxCWuVSXAGY/Yz5NA+K9zy
a/aqdu9ROP03R3m6qg1+CrJ1knuBoOj0Wsg11A4T2TofnZrcD5Mc9CTVFgeU
0525ddVhJ/wPS4Vw5A==
"], {{{}, {},
{RGBColor[0, 1, 0],
LineBox[{1, 139, 105, 80, 65, 154, 120, 95, 56, 148, 114, 89, 74,
51, 144, 110, 85, 70, 157, 123, 98, 61, 151, 117, 92, 77, 161, 127,
102, 2, 140, 106, 81, 164, 130, 66, 155, 121, 96, 57, 149, 115,
90, 167, 133, 75, 159, 125, 100, 170, 136, 52, 145, 111, 174, 86,
166, 132, 71, 158, 124, 176, 99, 169, 135, 179, 62, 152, 118, 175,
93, 168, 134, 178, 78, 162, 128, 177, 103, 171, 137, 180, 3, 141,
107, 173, 82, 165, 131, 67, 156, 122, 97, 58, 150, 116, 91, 76,
160, 126, 101, 53, 146, 112, 87, 72, 63, 4, 142, 108, 83, 68, 59,
54, 5, 182, 6, 7, 8, 9, 183, 10, 11, 12, 13, 14, 184, 15, 16, 17,
18, 185, 19, 20, 21, 22, 23, 186, 24, 25, 26, 27, 187, 28, 29, 30,
31, 32, 188, 33, 34, 35, 36, 189, 37, 38, 39, 40, 41, 190, 42, 43,
44, 45, 191, 46, 47, 48, 49, 143, 109, 84, 69, 60, 55, 147, 113,
88, 73, 64, 153, 119, 94, 79, 163, 129, 104, 172, 138, 181,
50}]}}, {
{RGBColor[
NCache[
Rational[2, 3], 0.6666666666666666], 0, 0],
PointBox[{182, 183, 184, 185, 186, 187, 188, 189, 190,
191}]}, {}, {}}}]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox["\"Density\"", TraditionalForm]},
AxesOrigin->{0, 0.8},
GridLines->Automatic,