This is the code for the paper:
@misc{chalkidis2023retrievalaugmented,
title={Retrieval-augmented Multi-label Text Classification},
author={Ilias Chalkidis and Yova Kementchedjhieva},
year={2023},
eprint={2305.13058},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Requirements: transformers
, pytorch
, sentence-transformers
, datasets
Run with:
python train_retriever.py --dataset_name <e.g. ecthr> --experiment_name <EXP_NAME>
To fine-tune a model, run:
#!/bin/bash
#SBATCH --job-name=ecthr-longformer
#SBATCH --cpus-per-task=8 --mem=8000M
#SBATCH -p gpu --gres=gpu:a100:1
#SBATCH --output=/home/rwg642/RetrievalAugmentedClassification/ecthr-longformer.txt
#SBATCH --time=8:00:00
module load miniconda/4.12.0
conda activate kiddothe2b
echo $SLURMD_NODENAME
echo $CUDA_VISIBLE_DEVICES
MODEL_PATH='allenai/longformer-base-4096'
DATASET_NAME='ecthr'
RETRIEVAL_AUGMENTED_MODEL=false
python train_classifier \
--model_name_or_path ${MODEL_PATH} \
--retrieval_augmentation ${RETRIEVAL_AUGMENTED_MODEL} \
--retrieved_documents 16 \
--dataset_name ${DATASET_NAME} \
--output_dir ../data/${DATASET_NAME}/${MODEL_PATH} \
--do_train \
--do_eval \
--do_pred \
--overwrite_output_dir \
--load_best_model_at_end \
--metric_for_best_model micro-f1 \
--greater_is_better True \
--max_seq_length 2048 \
--evaluation_strategy epoch \
--save_strategy epoch \
--save_total_limit 5 \
--learning_rate 3e-5 \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 16 \
--seed 42 \
--num_train_epochs 20 \
--warmup_ratio 0.05 \
--weight_decay 0.01 \
--fp16 \
--fp16_full_eval \
--lr_scheduler_type cosine
To create and use a custom Longformer-based run convert_roberta_to_lf
for RoBERTa models and convert_bert_to_lf
for BERT models:
module load miniconda/4.12.0
conda activate kiddothe2b
ROBERTA_MODEL_PATH='lexlms/roberta-large-cased'
OUTPUT_MODEL_PATH='lexlms/longformer-large'
python utils/convert_roberta_to_lf.py \
--roberta_checkpoint ${ROBERTA_MODEL_PATH} \
--output_model_path ${OUTPUT_MODEL_PATH}
then use MODEL_PATH='data/lexlms/longformer-large'
to fine-tune this model.
For legal tasks:
lexlms/roberta-large-cased
lexlms/roberta-base-cased
For biomedical tasks:
microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
microsoft/BiomedNLP-PubMedBERT-large-uncased-abstract