-
Notifications
You must be signed in to change notification settings - Fork 360
/
Dijkstra's Algorithm
94 lines (68 loc) · 1.44 KB
/
Dijkstra's Algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include <bits/stdc++.h>
using namespace std;
#define debug(x) cout<<#x<<" is "<<endl
using ll = long long;
#define x first
#define y second
template <typename T>
struct Dijkstra {
int node,edge;
vector< vector< pair<int,T> > > adj;
vector< T > level;
vector<int> parent;
Dijkstra(int _node, int _edge) : node(_node), edge(_edge) {
vector<int>(node+1).swap(parent);
vector<T>(node+1, numeric_limits<T>::max()).swap(level);
vector< vector< pair<int,T> > > (node+1).swap(adj);
}
void add_edge(int u, int v, T w) {
adj[u].push_back({v,w});
adj[v].push_back({u,w});
}
void traverse(int src) {
level[src] = 0;
set< pair<T,int> > s {{0,src}};
parent[src] = -1;
while(not s.empty()) {
auto it = *s.begin();
int cur_node = it.y;
T cur_level = it.x;
s.erase(s.begin());
for(auto u : adj[cur_node]) {
if(level[u.x] - u.y > cur_level) {
level[u.x] = cur_level + u.y;
parent[u.x] = cur_node;
s.insert({level[u.x],u.x});
}
}
}
}
void print_path(int x) {
if(level[x] == numeric_limits<T>::max()) {
cout<<"-1\n";
return;
}
if(x == -1){
return;
}
print_path(parent[x]);
cout<<x<<" ";
}
};
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int node,edge;
cin>>node>>edge;
Dijkstra<ll> d(node,edge);
while(edge--){
int x,y;
ll w;
cin>>x>>y>>w;
d.add_edge(x,y,w);
}
d.traverse(1);
d.print_path(node);
return 0;
}