This project provides python base classes and GStreamer elements supporting a broad range of analytics tasks. Supported functionality includes:
- object detection
- tracking
- video captioning
- translation
- transcription
- speech to text
- text to speech
- text to image
- LLMs
- serializing to Kafka server
Different ML toolkits are supported via the MLEngine
abstraction - we have nominal support for
TensorFlow, LiteRT and OpenVINO, but all testing thus far has been done with PyTorch.
These elements will work with your distribution's GStreamer packages. They have been tested on Ubuntu 24 with GStreamer 1.24.
There are two installation options described below: installing on your host machine, or installing with a Docker container:
Note: nvidia-cuda-toolkit
dependency assumes an Nvidia card on your system
sudo apt update && sudo apt -y upgrade
sudo apt install -y python3-pip python3-venv \
gstreamer1.0-plugins-base gstreamer1.0-plugins-base-apps \
gstreamer1.0-plugins-good gstreamer1.0-plugins-bad \
gir1.2-gst-plugins-bad-1.0 python3-gst-1.0 gstreamer1.0-python3-plugin-loader \
libcairo2 libcairo2-dev git nvidia-cuda-toolkit
python3 -m venv --system-site-packages ~/venv
git clone https://github.com/GrokImageCompression/grok.git
export VIRTUAL_ENV=$HOME/venv
export PATH=$VIRTUAL_ENV/bin:$PATH
export GST_PLUGIN_PATH=$HOME/src/gst-python-analytics/plugins
and then
source ~/.bashrc
source $VIRTUAL_ENV/bin/activate
pip install --upgrade pip && \
pip install pygobject torch torchvision transformers numpy black ruff
cd $HOME/src/gst-python-analytics
pip install -r requirements.txt
Important Note:
This Dockerfile maps a local gst-python-analytics
repository to the container,
and expects this repository to be located in $HOME/src
i.e. $HOME/src/gst-python-analytics
.
To use the host GPU in a docker container, you will need to install the nvidia container toolkit. If running on CPU, these steps can be skipped.
sudo apt update
sudo apt install -y nvidia-container-toolkit
sudo systemctl restart docker
docker build -f ./Dockerfile -t ubuntu24:latest .
a) If running on CPU, just remove --gpus all
from command below
b) This command assumes you have set up a Kafka network as described below
docker run --network kafka-network -v ~/src/gst-python-analytics/:/root/gst-python-analytics -it --rm --gpus all --name ubuntu24 ubuntu24:latest /bin/bash
In the container shell, run the following
# cd gst-python-analytics && pip install -r requirements.txt
Now you should be able to inspect the objectdetector
element:
gst-inspect-1.0 objectdetector
If you want to purge existing docker containers and images:
docker container prune -f
docker image prune -a -f
docker network create kafka-network
and list networks
docker network ls
Note: setup below assumes you are running your pipeline in a docker container.
If running pipeline from host, then the port changes from 9092
to 29092
,
and the broker changes from kafka
to localhost
.
docker stop kafka zookeeper
docker rm kafka zookeeper
docker run -d --name zookeeper --network kafka-network -e ZOOKEEPER_CLIENT_PORT=2181 confluentinc/cp-zookeeper:latest
docker run -d --name kafka --network kafka-network \
-e KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 \
-e KAFKA_ADVERTISED_LISTENERS=INSIDE://kafka:9092,OUTSIDE://localhost:29092 \
-e KAFKA_LISTENER_SECURITY_PROTOCOL_MAP=INSIDE:PLAINTEXT,OUTSIDE:PLAINTEXT \
-e KAFKA_LISTENERS=INSIDE://0.0.0.0:9092,OUTSIDE://0.0.0.0:29092 \
-e KAFKA_INTER_BROKER_LISTENER_NAME=INSIDE \
-e KAFKA_BROKER_ID=1 \
-e KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR=1 \
-p 9092:9092 \
-p 29092:29092 \
confluentinc/cp-kafka:latest
docker exec kafka kafka-topics --create --topic test-kafkasink-topic --bootstrap-server kafka:9092 --partitions 1 --replication-factor 1
docker exec -it kafka kafka-topics --list --bootstrap-server kafka:9092
docker exec -it kafka kafka-topics --delete --topic test-topic --bootstrap-server kafka:9092
docker exec -it kafka kafka-console-consumer --bootstrap-server kafka:9092 --topic test-kafkasink-topic --from-beginning
Possible model names:
fasterrcnn_resnet50_fpn
retinanet_resnet50_fpn
GST_DEBUG=4 gst-launch-1.0 multifilesrc location=data/000015.jpg ! jpegdec ! videoconvert ! videoscale ! objectdetector model-name=fasterrcnn_resnet50_fpn device=cuda batch-size=4 ! kafkasink schema-file=data/gst_analytics_object_detector.json broker=kafka:9092 topic=test-kafkasink-topic 2>&1 | grep kafkasink
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/people.mp4 ! decodebin ! videoconvert ! videoscale ! maskrcnn device=cuda batch-size=4 model-name=maskrcnn_resnet50_fpn ! videoconvert ! objectdetectionoverlay labels-color=0xFFFF0000 object-detection-outline-color=0xFFFF0000 ! autovideosink
gst-launch-1.0 filesrc location=data/soccer_tracking.mp4 ! decodebin ! videoconvert ! videoscale ! video/x-raw,width=640,height=480 ! yolo model-name=yolo11m device=cuda:0 track=True ! videoconvert ! objectdetectionoverlay labels-color=0xFFFF0000 object-detection-outline-color=0xFFFF0000 ! autovideosink
gst-launch-1.0 filesrc location=data/soccer_tracking.mp4 ! decodebin ! videoconvert ! videoscale ! video/x-raw,width=640,height=480 ! yolo model-name=yolo11m device=cuda:0 track=True ! analyticsoverlay ! videoconvert ! autovideosink
GST_DEBUG=4 gst-launch-1.0 analyticsstreammux name=mux ! videoconvert ! fakesink videotestsrc ! mux. videotestsrc pattern=ball ! mux. videotestsrc pattern=snow ! mux.
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/air_traffic_korean_with_english.wav ! decodebin ! audioconvert ! whispertranscribe device=cuda language=ko initial_prompt = "Air Traffic Control은, radar systems를, weather conditions에, flight paths를, communication은, unexpected weather conditions가, continuous training을, dedication과, professionalism" ! fakesink
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/air_traffic_korean_with_english.wav ! decodebin ! audioconvert ! whispertranscribe device=cuda language=ko translate=yes ! fakesink
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/air_traffic_korean_with_english.wav ! decodebin ! audioconvert ! whispertranscribe device=cuda language=ko translate=yes ! coquitts device=cuda ! audioconvert ! wavenc ! filesink location=output_audio.wav
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/air_traffic_korean_with_english.wav ! decodebin ! audioconvert ! whispertranscribe device=cuda language=ko translate=yes ! whisperspeechtts device=cuda ! audioconvert ! wavenc ! filesink location=output_audio.wav
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/air_traffic_korean_with_english.wav ! decodebin ! audioconvert ! whispertranscribe device=cuda language=ko translate=yes ! mariantranslate device=cuda src=en target=fr ! fakesink
Supported src/target languages:
https://huggingface.co/models?sort=trending&search=Helsinki
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/air_traffic_korean_with_english.wav ! decodebin ! audioconvert ! whisperlive device=cuda language=ko translate=yes llm-model-name="microsoft/phi-2" ! audioconvert ! wavenc ! filesink location=output_audio.wav
-
generate HuggingFace token
-
huggingface-cli login
and pass in token -
LLM pipeline (in this case, we use phi-2)
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/prompt_for_llm.txt ! llm device=cuda model-name="microsoft/phi-2" ! fakesink
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/prompt_for_stable_diffusion.txt ! stablediffusion device=cuda ! pngenc ! filesink location=output_image.png
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/soccer_tracking.mp4 ! decodebin ! videoconvert ! videoscale ! video/x-raw,width=640,height=480 ! yolo model-name=yolo11m device=cuda:0 track=True ! caption device=cuda:0 ! textoverlay ! analyticsoverlay ! videoconvert ! autovideosink
GST_DEBUG=4 gst-launch-1.0 filesrc location=data/soccer_tracking.mp4 ! decodebin ! videoconvert ! caption device=cuda:0 downsampled_width=320 downsampled_height=240 prompt="What is the name of the game being played?" ! textoverlay ! fakesink
pip install setuptools wheel twine
python setup.py sdist bdist_wheel
- ls dist/