-
Notifications
You must be signed in to change notification settings - Fork 2
/
rec_create_ops.v
64 lines (59 loc) · 2.36 KB
/
rec_create_ops.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Require Import RefProofDeps.
Require Import RData.
Require Import EventReplay.
Require Import MoverTypes.
Require Import Constants.
Require Import CommonLib.
Require Import RefTactics.
Require Import AbsAccessor.Spec.
Require Import RmiAux2.Spec.
Require Import RmiOps.Specs.rec_destroy_ops.
Require Import RmiOps.LowSpecs.rec_destroy_ops.
Require Import RmiOps.RefProof.RefRel.
Local Open Scope string_scope.
Local Open Scope Z_scope.
Local Opaque Z.add Z.mul Z.div Z.shiftl Z.shiftr Z.land Z.lor.
Section Refine.
Hint Unfold
get_g_rec_rd_spec
granule_map_spec
get_rec_g_rec_spec
get_rec_g_rec_list_spec
get_rec_rec_idx_spec
null_ptr_spec
realm_set_rec_entry_spec
buffer_unmap_spec
set_g_rec_rd_spec
granule_memzero_spec
granule_set_state_spec
granule_unlock_spec
granule_put_spec
atomic_granule_put_release_spec
.
Lemma rec_destroy_ops_spec_exists:
forall habd habd' labd g_rec
(Hspec: rec_destroy_ops_spec g_rec habd = Some habd')
(Hrel: relate_RData habd labd),
exists labd', rec_destroy_ops_spec0 g_rec labd = Some labd' /\ relate_RData habd' labd'.
Proof.
Local Opaque ptr_eq.
intros. destruct Hrel. inv id_rdata. destruct g_rec.
unfold rec_destroy_ops_spec, rec_destroy_ops_spec0 in *.
repeat autounfold in *. unfold ref_accessible.
hsimpl_hyp Hspec; inv Hspec; simpl_query_oracle; extract_prop_dec;
repeat destruct_con; bool_rel; simpl in *; srewrite;
repeat (simpl_htarget; grewrite; simpl in * ).
assert(6 <> 3) by omega.
assert(z <> (g_rec_rec_list (grec (gs (share labd)) @ z))) by (red; intro T; rewrite <- T in *; omega).
assert((g_rd (ginfo (gs (share labd)) @ z)) <> z) by (red; intro T; srewrite; omega).
assert((g_rd (ginfo (gs (share labd)) @ z)) <> (g_rec_rec_list (grec (gs (share labd)) @ z))) by (red; intro T; srewrite; omega).
repeat (simpl_htarget; try grewrite; repeat swap_fields; repeat simpl_field; simpl in * ).
repeat (solve_bool_range; grewrite).
solve_peq.
repeat (simpl_htarget; try grewrite; repeat swap_fields; repeat simpl_field; simpl in * ).
eexists; split. reflexivity.
constructor. simpl_htarget. rewrite (zmap_comm 3 6). simpl_htarget.
rewrite Prop0, <- Prop1. simpl_htarget. simpl_field. reflexivity.
red; intro T; inv T.
Qed.
End Refine.