-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRefRel.v
1191 lines (1173 loc) · 67.4 KB
/
RefRel.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import RefProofDeps.
Require Import RData.
Require Import EventReplay.
Require Import MoverTypes.
Require Import Constants.
Require Import CommonLib.
Require Import RefTactics.
Local Open Scope string_scope.
Local Open Scope Z_scope.
Section RefineRel.
Record relate_secure (hadt: RData) (ladt: RData) :=
mkrelate_secure {
mem_rel:
forall rd_gidx,
let g := (gs (share hadt)) @ rd_gidx in
forall (is_rd: gtype g = GRANULE_STATE_RD) vaddr data_gidx,
let ipa_gidx := __addr_to_gidx vaddr in
forall (Hwalk: rtts (share hadt) rd_gidx ipa_gidx = (data_gidx, true))
(Hdata: is_gidx data_gidx = true),
let ldata := (gs (share ladt)) @ data_gidx in
let hdata := (gs (share hadt)) @ data_gidx in
let ofst := vaddr mod 4096 in
match (sec_mem ((realms (share hadt)) @ rd_gidx)) @ vaddr with
| Some val => (g_data (gnorm ldata)) @ ofst = val
| None => (g_data (gnorm hdata)) @ ofst = (g_data (gnorm ldata)) @ ofst
end;
reg_not_run_rel:
forall rd_gidx rec_gidx,
let rd := (gs (share hadt)) @ rd_gidx in
let rec := (gs (share hadt)) @ rec_gidx in
let reclow := (gs (share ladt)) @ rec_gidx in
forall (is_rd: gtype rd = GRANULE_STATE_RD)
(is_rec: gtype rec = GRANULE_STATE_REC)
(is_rd_rec: g_rd (ginfo rec) = rd_gidx)
(not_run: g_running (grec rec) = None),
forall reg,
let realm := ((realms (share hadt)) @ rd_gidx) in
if get_reg reg ((decl_regs realm) @ rec_gidx) =? 1 then
get_reg reg (g_regs (grec rec)) = get_reg reg (g_regs (grec reclow))
else
get_reg reg ((sec_regs realm) @ rec_gidx) = get_reg reg (g_regs (grec reclow));
reg_running_rel:
forall rd_gidx rec_gidx,
let rd := (gs (share hadt)) @ rd_gidx in
let rec := (gs (share hadt)) @ rec_gidx in
let reclow := (gs (share ladt)) @ rec_gidx in
forall (is_rd: gtype rd = GRANULE_STATE_RD)
(is_rec: gtype rec = GRANULE_STATE_REC)
(is_rd_rec: g_rd (ginfo rec) = rd_gidx)
(running: g_running (grec rec) = Some CPU_ID),
forall reg,
let realm := ((realms (share hadt)) @ rd_gidx) in
if get_reg reg ((decl_regs realm) @ rec_gidx) =? 1 then
get_reg reg (cpu_regs (priv hadt)) = get_reg reg (cpu_regs (priv ladt))
else
get_reg reg ((sec_regs realm) @ rec_gidx) = get_reg reg (cpu_regs (priv ladt));
regs_eq_not_realm:
cur_rec (priv hadt) = None ->
cpu_regs (priv hadt) = cpu_regs (priv ladt)
}.
Inductive invariant (adt: RData) :=
| INV_SHARE
(gpt_false_ns:
forall gidx, (gpt (share adt)) @ gidx = false -> gtype ((gs (share adt)) @ gidx) = GRANULE_STATE_NS)
(delegate_zero:
forall st gidx,
let gn := (gs st) @ gidx in
gtype gn = GRANULE_STATE_DELEGATED ->
gnorm gn = zero_granule_data_normal /\
grec gn = zero_granule_data_rec)
(rec_rd:
forall gidx,
let gn := (gs (share adt)) @ gidx in
gtype gn = GRANULE_STATE_REC ->
let rd_gidx := g_rd (ginfo gn) in
gtype ((gs (share adt)) @ rd_gidx) = GRANULE_STATE_RD)
(table_prop:
forall rd_gidx,
let gn := (gs (share adt)) @ rd_gidx in
gtype gn = GRANULE_STATE_RD ->
forall ipa_gidx data_gidx b,
(rtts (share adt)) rd_gidx ipa_gidx = (data_gidx, b) ->
is_gidx data_gidx = true ->
let gn_data := (gs (share adt)) @ data_gidx in
gtype gn_data = GRANULE_STATE_DATA /\
tbl_parent (gaux gn_data) = ipa_gidx /\ g_rd (ginfo gn_data) = rd_gidx)
(tlb_prop:
forall rd_gidx rec_gidx,
let rd := (gs (share adt)) @ rd_gidx in
let rec := (gs (share adt)) @ rec_gidx in
forall (is_rd: gtype rd = GRANULE_STATE_RD)
(is_rec: gtype rec = GRANULE_STATE_REC)
(is_rd_rec: g_rd (ginfo rec) = rd_gidx)
(running: g_running (grec rec) = Some CPU_ID),
forall ipa_gidx data_gidx, (tlbs (share adt)) CPU_ID ipa_gidx = data_gidx ->
is_gidx data_gidx = true ->
(rtts (share adt)) rd_gidx ipa_gidx = (data_gidx, true))
(running_not_new:
forall rd_gidx rec_gidx,
let rd := (gs (share adt)) @ rd_gidx in
let rec := (gs (share adt)) @ rec_gidx in
forall (is_rd: gtype rd = GRANULE_STATE_RD)
(is_rec: gtype rec = GRANULE_STATE_REC)
(is_rd_rec: g_rd (ginfo rec) = rd_gidx)
(running: g_running (grec rec) = Some CPU_ID),
g_realm_state (gnorm rd) = REALM_STATE_ACTIVE)
(cur_running:
forall rec_gidx,
let rec := (gs (share adt)) @ rec_gidx in
forall (is_rec: gtype rec = GRANULE_STATE_REC)
(running: g_running (grec rec) = Some CPU_ID),
cur_rec (priv adt) = Some rec_gidx)
(rd_gcnt:
forall st rd_gidx,
let rd := (gs st) @ rd_gidx in
gtype rd = GRANULE_STATE_RD ->
gcnt rd = 0 ->
~ exists gidx, gtype ((gs st) @ gidx) = GRANULE_STATE_REC /\
(g_rd (ginfo (gs st) @ gidx)) = rd_gidx)
(rd_gcnt_rtt:
forall st rd_gidx,
let rd := (gs st) @ rd_gidx in
gtype rd = GRANULE_STATE_RD ->
gcnt rd = 0 ->
forall ipa, (rtts st rd_gidx ipa = (0, false)))
(new_decl_mem:
forall st rd_gidx,
let gn := (gs st) @ rd_gidx in
gtype gn = GRANULE_STATE_RD ->
g_realm_state (gnorm gn) = REALM_STATE_NEW ->
forall addr, (sec_mem ((realms st) @ rd_gidx)) @ addr = None)
(new_decl_regs:
forall st rd_gidx,
let gn := (gs st) @ rd_gidx in
gtype gn = GRANULE_STATE_RD ->
g_realm_state (gnorm gn) = REALM_STATE_NEW ->
forall gidx reg, get_reg reg ((decl_regs ((realms st) @ rd_gidx)) @ gidx) = 1)
(decl_gpregs:
forall d rd_gidx rec_gidx,
let rd := (gs (share d)) @ rd_gidx in
let rec := (gs (share d)) @ rec_gidx in
forall (is_rd: gtype rd = GRANULE_STATE_RD)
(is_rec: gtype rec = GRANULE_STATE_REC)
(is_rd_rec: g_rd (ginfo rec) = rd_gidx)
(running: mstage (priv d) = REALM rd_gidx rec_gidx),
forall reg, (0 <= reg <= 30) -> get_reg reg ((decl_regs ((realms (share d)) @ rd_gidx)) @ rec_gidx) = 0)
(new_table:
forall st gidx,
let gn := (gs st) @ gidx in
gtype gn <> GRANULE_STATE_RD ->
forall ipa, rtts st gidx ipa = (0, false))
(decl_sysregs:
forall d rd_gidx,
let gn := (gs (share d)) @ rd_gidx in
forall gidx reg, ~ (0 <= reg <= 30) -> get_reg reg ((decl_regs ((realms (share d)) @ rd_gidx)) @ gidx) = 1):
invariant adt.
Inductive id_granule (hg: Granule) (lg: Granule) :=
| ID_GRANULE
(id_glock: glock lg = glock hg)
(id_gref: gref lg = gref hg)
(id_gtype: gtype lg = gtype hg)
(id_gcnt: gcnt lg = gcnt hg)
(id_ginfo: ginfo lg = ginfo hg)
(id_gro: gro lg = gro hg)
(id_gaux: gaux lg = gaux hg)
(id_not_data: forall (Htype: gtype hg <> GRANULE_STATE_DATA), g_data (gnorm hg) = g_data (gnorm lg))
(id_not_rec: forall (Htype: gtype hg <> GRANULE_STATE_REC), g_regs (grec hg) = g_regs (grec lg))
(id_g_realm_state: g_realm_state (gnorm lg) = g_realm_state (gnorm hg))
(id_g_par_base: g_par_base (gnorm lg) = g_par_base (gnorm hg))
(id_g_par_end: g_par_end (gnorm lg) = g_par_end (gnorm hg))
(id_g_rec_list: g_rec_list (gnorm lg) = g_rec_list (gnorm hg))
(id_g_rtt: g_rtt (gnorm lg) = g_rtt (gnorm hg))
(id_g_measurement_algo: g_measurement_algo (gnorm lg) = g_measurement_algo (gnorm hg))
(id_g_measurement_ctx: g_measurement_ctx (gnorm lg) = g_measurement_ctx (gnorm hg))
(id_g_measurement: g_measurement (gnorm lg) = g_measurement (gnorm hg))
(id_g_recs: g_recs (gnorm lg) = g_recs (gnorm hg))
(id_g_rvic: g_rvic (gnorm lg) = g_rvic (gnorm hg))
(id_g_runnable: g_runnable (gnorm lg) = g_runnable (gnorm hg))
(id_g_pc: g_pc (grec lg) = g_pc (grec hg))
(id_g_pstate: g_pstate (grec lg) = g_pstate (grec hg))
(id_g_vtimer: g_vtimer (grec lg) = g_vtimer (grec hg))
(id_g_ptimer: g_ptimer (grec lg) = g_ptimer (grec hg))
(id_g_dispose_pending: g_dispose_pending (grec lg) = g_dispose_pending (grec hg))
(id_g_dispose_addr: g_dispose_addr (grec lg) = g_dispose_addr (grec hg))
(id_g_dispose_size: g_dispose_size (grec lg) = g_dispose_size (grec hg))
(id_g_rec_rd: g_rec_rd (grec lg) = g_rec_rd (grec hg))
(id_g_rec_par_base: g_rec_par_base (grec lg) = g_rec_par_base (grec hg))
(id_g_rec_par_end: g_rec_par_end (grec lg) = g_rec_par_end (grec hg))
(id_g_rec_rec_list: g_rec_rec_list (grec lg) = g_rec_rec_list (grec hg))
(id_g_esr: g_esr (grec lg) = g_esr (grec hg))
(id_g_running: g_running (grec lg) = g_running (grec hg)):
id_granule hg lg.
Inductive relate_share (hst: State) (lst: State):=
| SEC_SHARE
(id_gpt: gpt lst = gpt hst)
(id_gpt_lk: gpt_lk lst = gpt_lk hst)
(id_tlbs: tlbs lst = tlbs hst)
(id_rtts: rtts lst = rtts hst)
(id_granule: forall gidx, id_granule ((gs hst) @ gidx) ((gs lst) @ gidx)):
relate_share hst lst.
Inductive sysregs_eq regs1 regs2 :=
| SYSREGS_EQ
(lr_eq: r_lr regs1 = r_lr regs2)
(cntp_ctl_el0_eq: r_cntp_ctl_el0 regs1 = r_cntp_ctl_el0 regs2)
(cntp_cval_el0_eq: r_cntp_cval_el0 regs1 = r_cntp_cval_el0 regs2)
(cntp_tval_el0_eq: r_cntp_tval_el0 regs1 = r_cntp_tval_el0 regs2)
(cntv_ctl_el0_eq: r_cntv_ctl_el0 regs1 = r_cntv_ctl_el0 regs2)
(cntv_cval_el0_eq: r_cntv_cval_el0 regs1 = r_cntv_cval_el0 regs2)
(cntv_tval_el0_eq: r_cntv_tval_el0 regs1 = r_cntv_tval_el0 regs2)
(sp_el0_eq: r_sp_el0 regs1 = r_sp_el0 regs2)
(pmcr_el0_eq: r_pmcr_el0 regs1 = r_pmcr_el0 regs2)
(pmuserenr_el0_eq: r_pmuserenr_el0 regs1 = r_pmuserenr_el0 regs2)
(tpidrro_el0_eq: r_tpidrro_el0 regs1 = r_tpidrro_el0 regs2)
(tpidr_el0_eq: r_tpidr_el0 regs1 = r_tpidr_el0 regs2)
(sp_el1_eq: r_sp_el1 regs1 = r_sp_el1 regs2)
(elr_el1_eq: r_elr_el1 regs1 = r_elr_el1 regs2)
(spsr_el1_eq: r_spsr_el1 regs1 = r_spsr_el1 regs2)
(csselr_el1_eq: r_csselr_el1 regs1 = r_csselr_el1 regs2)
(sctlr_el1_eq: r_sctlr_el1 regs1 = r_sctlr_el1 regs2)
(actlr_el1_eq: r_actlr_el1 regs1 = r_actlr_el1 regs2)
(cpacr_el1_eq: r_cpacr_el1 regs1 = r_cpacr_el1 regs2)
(zcr_el1_eq: r_zcr_el1 regs1 = r_zcr_el1 regs2)
(ttbr0_el1_eq: r_ttbr0_el1 regs1 = r_ttbr0_el1 regs2)
(ttbr1_el1_eq: r_ttbr1_el1 regs1 = r_ttbr1_el1 regs2)
(tcr_el1_eq: r_tcr_el1 regs1 = r_tcr_el1 regs2)
(esr_el1_eq: r_esr_el1 regs1 = r_esr_el1 regs2)
(afsr0_el1_eq: r_afsr0_el1 regs1 = r_afsr0_el1 regs2)
(afsr1_el1_eq: r_afsr1_el1 regs1 = r_afsr1_el1 regs2)
(far_el1_eq: r_far_el1 regs1 = r_far_el1 regs2)
(mair_el1_eq: r_mair_el1 regs1 = r_mair_el1 regs2)
(vbar_el1_eq: r_vbar_el1 regs1 = r_vbar_el1 regs2)
(contextidr_el1_eq: r_contextidr_el1 regs1 = r_contextidr_el1 regs2)
(tpidr_el1_eq: r_tpidr_el1 regs1 = r_tpidr_el1 regs2)
(amair_el1_eq: r_amair_el1 regs1 = r_amair_el1 regs2)
(cntkctl_el1_eq: r_cntkctl_el1 regs1 = r_cntkctl_el1 regs2)
(par_el1_eq: r_par_el1 regs1 = r_par_el1 regs2)
(mdscr_el1_eq: r_mdscr_el1 regs1 = r_mdscr_el1 regs2)
(mdccint_el1_eq: r_mdccint_el1 regs1 = r_mdccint_el1 regs2)
(disr_el1_eq: r_disr_el1 regs1 = r_disr_el1 regs2)
(mpam0_el1_eq: r_mpam0_el1 regs1 = r_mpam0_el1 regs2)
(cnthctl_el2_eq: r_cnthctl_el2 regs1 = r_cnthctl_el2 regs2)
(cntvoff_el2_eq: r_cntvoff_el2 regs1 = r_cntvoff_el2 regs2)
(cntpoff_el2_eq: r_cntpoff_el2 regs1 = r_cntpoff_el2 regs2)
(vmpidr_el2_eq: r_vmpidr_el2 regs1 = r_vmpidr_el2 regs2)
(vttbr_el2_eq: r_vttbr_el2 regs1 = r_vttbr_el2 regs2)
(vtcr_el2_eq: r_vtcr_el2 regs1 = r_vtcr_el2 regs2)
(hcr_el2_eq: r_hcr_el2 regs1 = r_hcr_el2 regs2)
(actlr_el2_eq: r_actlr_el2 regs1 = r_actlr_el2 regs2)
(afsr0_el2_eq: r_afsr0_el2 regs1 = r_afsr0_el2 regs2)
(afsr1_el2_eq: r_afsr1_el2 regs1 = r_afsr1_el2 regs2)
(amair_el2_eq: r_amair_el2 regs1 = r_amair_el2 regs2)
(cptr_el2_eq: r_cptr_el2 regs1 = r_cptr_el2 regs2)
(elr_el2_eq: r_elr_el2 regs1 = r_elr_el2 regs2)
(esr_el2_eq: r_esr_el2 regs1 = r_esr_el2 regs2)
(far_el2_eq: r_far_el2 regs1 = r_far_el2 regs2)
(hacr_el2_eq: r_hacr_el2 regs1 = r_hacr_el2 regs2)
(hpfar_el2_eq: r_hpfar_el2 regs1 = r_hpfar_el2 regs2)
(hstr_el2_eq: r_hstr_el2 regs1 = r_hstr_el2 regs2)
(mair_el2_eq: r_mair_el2 regs1 = r_mair_el2 regs2)
(mpam_el2_eq: r_mpam_el2 regs1 = r_mpam_el2 regs2)
(mpamhcr_el2_eq: r_mpamhcr_el2 regs1 = r_mpamhcr_el2 regs2)
(pmscr_el2_eq: r_pmscr_el2 regs1 = r_pmscr_el2 regs2)
(sctlr_el2_eq: r_sctlr_el2 regs1 = r_sctlr_el2 regs2)
(scxtnum_el2_eq: r_scxtnum_el2 regs1 = r_scxtnum_el2 regs2)
(sp_el2_eq: r_sp_el2 regs1 = r_sp_el2 regs2)
(spsr_el2_eq: r_spsr_el2 regs1 = r_spsr_el2 regs2)
(tcr_el2_eq: r_tcr_el2 regs1 = r_tcr_el2 regs2)
(tfsr_el2_eq: r_tfsr_el2 regs1 = r_tfsr_el2 regs2)
(tpidr_el2_eq: r_tpidr_el2 regs1 = r_tpidr_el2 regs2)
(trfcr_el2_eq: r_trfcr_el2 regs1 = r_trfcr_el2 regs2)
(ttbr0_el2_eq: r_ttbr0_el2 regs1 = r_ttbr0_el2 regs2)
(ttbr1_el2_eq: r_ttbr1_el2 regs1 = r_ttbr1_el2 regs2)
(vbar_el2_eq: r_vbar_el2 regs1 = r_vbar_el2 regs2)
(vdisr_el2_eq: r_vdisr_el2 regs1 = r_vdisr_el2 regs2)
(vncr_el2_eq: r_vncr_el2 regs1 = r_vncr_el2 regs2)
(vpidr_el2_eq: r_vpidr_el2 regs1 = r_vpidr_el2 regs2)
(vsesr_el2_eq: r_vsesr_el2 regs1 = r_vsesr_el2 regs2)
(vstcr_el2_eq: r_vstcr_el2 regs1 = r_vstcr_el2 regs2)
(vsttbr_el2_eq: r_vsttbr_el2 regs1 = r_vsttbr_el2 regs2)
(zcr_el2_eq: r_zcr_el2 regs1 = r_zcr_el2 regs2)
(icc_sre_el2_eq: r_icc_sre_el2 regs1 = r_icc_sre_el2 regs2)
(icc_hppir1_el1_eq: r_icc_hppir1_el1 regs1 = r_icc_hppir1_el1 regs2)
(spsr_el3_eq: r_spsr_el3 regs1 = r_spsr_el3 regs2)
(elr_el3_eq: r_elr_el3 regs1 = r_elr_el3 regs2)
(esr_el3_eq: r_esr_el3 regs1 = r_esr_el3 regs2)
(scr_el3_eq: r_scr_el3 regs1 = r_scr_el3 regs2)
(tpidr_el3_eq: r_tpidr_el3 regs1 = r_tpidr_el3 regs2):
sysregs_eq regs1 regs2.
Inductive relate_priv priv1 priv2 :=
| RELATE_PRIV
(cpu_regs_eq: sysregs_eq (cpu_regs priv1) (cpu_regs priv2))
(asm_regs_eq: asm_regs priv1 = asm_regs priv2)
(id_regs_eq: id_regs priv1 = id_regs priv2)
(buffer_eq: buffer priv1 = buffer priv2)
(ns_regs_el2_eq: ns_regs_el2 priv1 = ns_regs_el2 priv2)
(realm_params_eq: realm_params priv1 = realm_params priv2)
(rec_params_eq: rec_params priv1 = rec_params priv2)
(rec_run_eq: rec_run priv1 = rec_run priv2)
(retval_eq: retval priv1 = retval priv2)
(locked_g_eq: locked_g priv1 = locked_g priv2)
(wi_last_level_eq: wi_last_level priv1 = wi_last_level priv2)
(wi_llt_eq: wi_llt priv1 = wi_llt priv2)
(wi_index_eq: wi_index priv1 = wi_index priv2)
(rvic_x0_eq: rvic_x0 priv1 = rvic_x0 priv2)
(rvic_x1_eq: rvic_x1 priv1 = rvic_x1 priv2)
(rvic_x2_eq: rvic_x2 priv1 = rvic_x2 priv2)
(rvic_x3_eq: rvic_x3 priv1 = rvic_x3 priv2)
(rvic_target_eq: rvic_target priv1 = rvic_target priv2)
(rvic_ns_notify_eq: rvic_ns_notify priv1 = rvic_ns_notify priv2)
(psci_x0_eq: psci_x0 priv1 = psci_x0 priv2)
(psci_x1_eq: psci_x1 priv1 = psci_x1 priv2)
(psci_x2_eq: psci_x2 priv1 = psci_x2 priv2)
(psci_x3_eq: psci_x3 priv1 = psci_x3 priv2)
(psci_forward_x0_eq: psci_forward_x0 priv1 = psci_forward_x0 priv2)
(psci_forward_x1_eq: psci_forward_x1 priv1 = psci_forward_x1 priv2)
(psci_forward_x2_eq: psci_forward_x2 priv1 = psci_forward_x2 priv2)
(psci_forward_x3_eq: psci_forward_x3 priv1 = psci_forward_x3 priv2)
(psci_forward_psci_call_eq: psci_forward_psci_call priv1 = psci_forward_psci_call priv2)
(target_rec_eq: target_rec priv1 = target_rec priv2)
(el2_stack_eq: el2_stack priv1 = el2_stack priv2)
(el3_stack_eq: el3_stack priv1 = el3_stack priv2)
(ns_regs_el3_eq: ns_regs_el3 priv1 = ns_regs_el3 priv2)
(realm_regs_el3_eq: realm_regs_el3 priv1 = realm_regs_el3 priv2)
(cur_rec_eq: cur_rec priv1 = cur_rec priv2)
(mstage_eq: mstage priv1 = mstage priv2)
(trap_reason_eq: trap_reason priv1 = trap_reason priv2)
(trap_type_eq: trap_type priv1 = trap_type priv2):
relate_priv priv1 priv2.
Record relate_adt (hadt: RData) (ladt: RData) :=
mkrelate_adt {
id_share: relate_share (share hadt) (share ladt);
id_priv: relate_priv (priv hadt) (priv ladt);
invs: invariant hadt;
rel_secure: relate_secure hadt ladt
}.
End RefineRel.
Hypothesis query_oracle_security:
forall habd habd' labd
(Hspec: query_oracle habd = Some habd')
(Hrel: relate_share (share habd) (share labd))
(Hinv: invariant habd)
(Hsec: relate_secure habd labd),
exists labd', query_oracle labd = Some labd' /\
relate_share (share habd') (share labd') /\ invariant habd' /\ relate_secure habd' labd'.
Ltac exploit_query_oracle H :=
match goal with
| [ |- context[query_oracle ?ld]] =>
match type of H with
| query_oracle ?hd = Some ?hd' =>
exploit (query_oracle_security hd hd' ld H)
end
end; simpl.
Lemma set_gpregs_sys_eq_l:
forall regs1 regs2 reg (Hreg: 0 <= reg <= 30) val,
sysregs_eq regs1 regs2 -> sysregs_eq (set_reg reg val regs1) regs2.
Proof.
intros. assert(0 <= reg < 31) by omega.
destruct_case H0; grewrite; simpl_update_reg; inv H; constructor; simpl; assumption.
Qed.
Lemma set_gpregs_sys_eq_r:
forall regs1 regs2 reg (Hreg: 0 <= reg <= 30) val,
sysregs_eq regs1 regs2 -> sysregs_eq regs1 (set_reg reg val regs2).
Proof.
intros. assert(0 <= reg < 31) by omega.
destruct_case H0; grewrite; simpl_update_reg; inv H; constructor; simpl; assumption.
Qed.
Lemma relate_share_gpt:
forall sa sb (Hrelate: relate_share sa sb), gpt sb = gpt sa.
Proof. intros. inv Hrelate. assumption. Qed.
Lemma relate_share_gpt_lk:
forall sa sb (Hrelate: relate_share sa sb), gpt_lk sb = gpt_lk sa.
Proof. intros. inv Hrelate. assumption. Qed.
Lemma relate_share_tlbs:
forall sa sb (Hrelate: relate_share sa sb), tlbs sb = tlbs sa.
Proof. intros. inv Hrelate. assumption. Qed.
Lemma relate_share_rtts:
forall sa sb (Hrelate: relate_share sa sb), rtts sb = rtts sa.
Proof. intros. inv Hrelate. assumption. Qed.
Lemma relate_share_glock:
forall sa sb (Hrelate: relate_share sa sb) gidx, glock ((gs sb) @ gidx) = glock ((gs sa) @ gidx).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_gref:
forall sa sb (Hrelate: relate_share sa sb) gidx, gref ((gs sb) @ gidx) = gref ((gs sa) @ gidx).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_gtype:
forall sa sb (Hrelate: relate_share sa sb) gidx, gtype ((gs sb) @ gidx) = gtype ((gs sa) @ gidx).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_gcnt:
forall sa sb (Hrelate: relate_share sa sb) gidx, gcnt ((gs sb) @ gidx) = gcnt ((gs sa) @ gidx).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_ginfo:
forall sa sb (Hrelate: relate_share sa sb) gidx, ginfo ((gs sb) @ gidx) = ginfo ((gs sa) @ gidx).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_gro:
forall sa sb (Hrelate: relate_share sa sb) gidx, gro ((gs sb) @ gidx) = gro ((gs sa) @ gidx).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_gaux:
forall sa sb (Hrelate: relate_share sa sb) gidx, gaux ((gs sb) @ gidx) = gaux ((gs sa) @ gidx).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_realm_state:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_realm_state (gnorm ((gs sb) @ gidx)) = g_realm_state (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_par_base:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_par_base (gnorm ((gs sb) @ gidx)) = g_par_base (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_par_end:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_par_end (gnorm ((gs sb) @ gidx)) = g_par_end (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_rec_list:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_rec_list (gnorm ((gs sb) @ gidx)) = g_rec_list (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_rtt:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_rtt (gnorm ((gs sb) @ gidx)) = g_rtt (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_measurement_algo:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_measurement_algo (gnorm ((gs sb) @ gidx)) = g_measurement_algo (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_measurement_ctx:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_measurement_ctx (gnorm ((gs sb) @ gidx)) = g_measurement_ctx (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_measurement:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_measurement (gnorm ((gs sb) @ gidx)) = g_measurement (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_recs:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_recs (gnorm ((gs sb) @ gidx)) = g_recs (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_rvic:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_rvic (gnorm ((gs sb) @ gidx)) = g_rvic (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_runnable:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_runnable (gnorm ((gs sb) @ gidx)) = g_runnable (gnorm ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_pc:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_pc (grec ((gs sb) @ gidx)) = g_pc (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_pstate:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_pstate (grec ((gs sb) @ gidx)) = g_pstate (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_vtimer:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_vtimer (grec ((gs sb) @ gidx)) = g_vtimer (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_ptimer:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_ptimer (grec ((gs sb) @ gidx)) = g_ptimer (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_dispose_pending:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_dispose_pending (grec ((gs sb) @ gidx)) = g_dispose_pending (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_dispose_addr:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_dispose_addr (grec ((gs sb) @ gidx)) = g_dispose_addr (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_dispose_size:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_dispose_size (grec ((gs sb) @ gidx)) = g_dispose_size (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_rec_rd:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_rec_rd (grec ((gs sb) @ gidx)) = g_rec_rd (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_rec_par_base:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_rec_par_base (grec ((gs sb) @ gidx)) = g_rec_par_base (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_rec_par_end:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_rec_par_end (grec ((gs sb) @ gidx)) = g_rec_par_end (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_rec_rec_list:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_rec_rec_list (grec ((gs sb) @ gidx)) = g_rec_rec_list (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_esr:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_esr (grec ((gs sb) @ gidx)) = g_esr (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_g_running:
forall sa sb (Hrelate: relate_share sa sb) gidx, g_running (grec ((gs sb) @ gidx)) = g_running (grec ((gs sa) @ gidx)).
Proof. intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T. assumption. Qed.
Lemma relate_share_ref_accessible:
forall sa sb (Hrelate: relate_share sa sb) gidx c,
ref_accessible ((gs sb) @ gidx) c = ref_accessible ((gs sa) @ gidx) c.
Proof.
intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T.
unfold ref_accessible. grewrite. reflexivity.
Qed.
Lemma relate_share_g_data:
forall sa sb (Hrelate: relate_share sa sb) gidx (Htype: gtype ((gs sa) @ gidx) <> GRANULE_STATE_DATA),
g_data (gnorm ((gs sb) @ gidx)) = g_data (gnorm ((gs sa) @ gidx)).
Proof.
intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T.
rewrite id_not_data. reflexivity. assumption.
Qed.
Lemma relate_share_g_regs:
forall sa sb (Hrelate: relate_share sa sb) gidx (Htype: gtype ((gs sa) @ gidx) <> GRANULE_STATE_REC),
g_regs (grec ((gs sb) @ gidx)) = g_regs (grec ((gs sa) @ gidx)).
Proof.
intros. inv Hrelate. pose proof (id_granule0 gidx) as T. inversion T.
rewrite id_not_rec. reflexivity. assumption.
Qed.
Lemma relate_priv_asm_regs:
forall pa pb (Hrelate: relate_priv pa pb), asm_regs pb = asm_regs pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_id_regs:
forall pa pb (Hrelate: relate_priv pa pb), id_regs pb = id_regs pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_buffer:
forall pa pb (Hrelate: relate_priv pa pb), buffer pb = buffer pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_ns_regs_el2:
forall pa pb (Hrelate: relate_priv pa pb), ns_regs_el2 pb = ns_regs_el2 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_realm_params:
forall pa pb (Hrelate: relate_priv pa pb), realm_params pb = realm_params pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rec_params:
forall pa pb (Hrelate: relate_priv pa pb), rec_params pb = rec_params pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rec_run:
forall pa pb (Hrelate: relate_priv pa pb), rec_run pb = rec_run pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_retval:
forall pa pb (Hrelate: relate_priv pa pb), retval pb = retval pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_locked_g:
forall pa pb (Hrelate: relate_priv pa pb), locked_g pb = locked_g pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_wi_last_level:
forall pa pb (Hrelate: relate_priv pa pb), wi_last_level pb = wi_last_level pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_wi_llt:
forall pa pb (Hrelate: relate_priv pa pb), wi_llt pb = wi_llt pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_wi_index:
forall pa pb (Hrelate: relate_priv pa pb), wi_index pb = wi_index pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rvic_x0:
forall pa pb (Hrelate: relate_priv pa pb), rvic_x0 pb = rvic_x0 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rvic_x1:
forall pa pb (Hrelate: relate_priv pa pb), rvic_x1 pb = rvic_x1 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rvic_x2:
forall pa pb (Hrelate: relate_priv pa pb), rvic_x2 pb = rvic_x2 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rvic_x3:
forall pa pb (Hrelate: relate_priv pa pb), rvic_x3 pb = rvic_x3 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rvic_target:
forall pa pb (Hrelate: relate_priv pa pb), rvic_target pb = rvic_target pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_rvic_ns_notify:
forall pa pb (Hrelate: relate_priv pa pb), rvic_ns_notify pb = rvic_ns_notify pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_x0:
forall pa pb (Hrelate: relate_priv pa pb), psci_x0 pb = psci_x0 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_x1:
forall pa pb (Hrelate: relate_priv pa pb), psci_x1 pb = psci_x1 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_x2:
forall pa pb (Hrelate: relate_priv pa pb), psci_x2 pb = psci_x2 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_x3:
forall pa pb (Hrelate: relate_priv pa pb), psci_x3 pb = psci_x3 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_forward_x0:
forall pa pb (Hrelate: relate_priv pa pb), psci_forward_x0 pb = psci_forward_x0 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_forward_x1:
forall pa pb (Hrelate: relate_priv pa pb), psci_forward_x1 pb = psci_forward_x1 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_forward_x2:
forall pa pb (Hrelate: relate_priv pa pb), psci_forward_x2 pb = psci_forward_x2 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_forward_x3:
forall pa pb (Hrelate: relate_priv pa pb), psci_forward_x3 pb = psci_forward_x3 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_psci_forward_psci_call:
forall pa pb (Hrelate: relate_priv pa pb), psci_forward_psci_call pb = psci_forward_psci_call pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_target_rec:
forall pa pb (Hrelate: relate_priv pa pb), target_rec pb = target_rec pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_el2_stack:
forall pa pb (Hrelate: relate_priv pa pb), el2_stack pb = el2_stack pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_el3_stack:
forall pa pb (Hrelate: relate_priv pa pb), el3_stack pb = el3_stack pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_ns_regs_el3:
forall pa pb (Hrelate: relate_priv pa pb), ns_regs_el3 pb = ns_regs_el3 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_realm_regs_el3:
forall pa pb (Hrelate: relate_priv pa pb), realm_regs_el3 pb = realm_regs_el3 pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_cur_rec:
forall pa pb (Hrelate: relate_priv pa pb), cur_rec pb = cur_rec pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_mstage:
forall pa pb (Hrelate: relate_priv pa pb), mstage pb = mstage pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_trap_reason:
forall pa pb (Hrelate: relate_priv pa pb), trap_reason pb = trap_reason pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_trap_type:
forall pa pb (Hrelate: relate_priv pa pb), trap_type pb = trap_type pa.
Proof. intros; inv Hrelate. grewrite; reflexivity. Qed.
Lemma relate_priv_r_lr:
forall pa pb (Hrelate: relate_priv pa pb), r_lr (cpu_regs pb) = r_lr (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq. grewrite. reflexivity. Qed.
Lemma relate_priv_r_cntp_ctl_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_cntp_ctl_el0 (cpu_regs pb) = r_cntp_ctl_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntp_cval_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_cntp_cval_el0 (cpu_regs pb) = r_cntp_cval_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntp_tval_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_cntp_tval_el0 (cpu_regs pb) = r_cntp_tval_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntv_ctl_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_cntv_ctl_el0 (cpu_regs pb) = r_cntv_ctl_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntv_cval_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_cntv_cval_el0 (cpu_regs pb) = r_cntv_cval_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntv_tval_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_cntv_tval_el0 (cpu_regs pb) = r_cntv_tval_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_sp_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_sp_el0 (cpu_regs pb) = r_sp_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_pmcr_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_pmcr_el0 (cpu_regs pb) = r_pmcr_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_pmuserenr_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_pmuserenr_el0 (cpu_regs pb) = r_pmuserenr_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tpidrro_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_tpidrro_el0 (cpu_regs pb) = r_tpidrro_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tpidr_el0:
forall pa pb (Hrelate: relate_priv pa pb), r_tpidr_el0 (cpu_regs pb) = r_tpidr_el0 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_sp_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_sp_el1 (cpu_regs pb) = r_sp_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_elr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_elr_el1 (cpu_regs pb) = r_elr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_spsr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_spsr_el1 (cpu_regs pb) = r_spsr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_csselr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_csselr_el1 (cpu_regs pb) = r_csselr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_sctlr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_sctlr_el1 (cpu_regs pb) = r_sctlr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_actlr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_actlr_el1 (cpu_regs pb) = r_actlr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cpacr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_cpacr_el1 (cpu_regs pb) = r_cpacr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_zcr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_zcr_el1 (cpu_regs pb) = r_zcr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_ttbr0_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_ttbr0_el1 (cpu_regs pb) = r_ttbr0_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_ttbr1_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_ttbr1_el1 (cpu_regs pb) = r_ttbr1_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tcr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_tcr_el1 (cpu_regs pb) = r_tcr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_esr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_esr_el1 (cpu_regs pb) = r_esr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_afsr0_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_afsr0_el1 (cpu_regs pb) = r_afsr0_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_afsr1_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_afsr1_el1 (cpu_regs pb) = r_afsr1_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_far_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_far_el1 (cpu_regs pb) = r_far_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_mair_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_mair_el1 (cpu_regs pb) = r_mair_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vbar_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_vbar_el1 (cpu_regs pb) = r_vbar_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_contextidr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_contextidr_el1 (cpu_regs pb) = r_contextidr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tpidr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_tpidr_el1 (cpu_regs pb) = r_tpidr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_amair_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_amair_el1 (cpu_regs pb) = r_amair_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntkctl_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_cntkctl_el1 (cpu_regs pb) = r_cntkctl_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_par_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_par_el1 (cpu_regs pb) = r_par_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_mdscr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_mdscr_el1 (cpu_regs pb) = r_mdscr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_mdccint_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_mdccint_el1 (cpu_regs pb) = r_mdccint_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_disr_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_disr_el1 (cpu_regs pb) = r_disr_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_mpam0_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_mpam0_el1 (cpu_regs pb) = r_mpam0_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cnthctl_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_cnthctl_el2 (cpu_regs pb) = r_cnthctl_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntvoff_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_cntvoff_el2 (cpu_regs pb) = r_cntvoff_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cntpoff_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_cntpoff_el2 (cpu_regs pb) = r_cntpoff_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vmpidr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vmpidr_el2 (cpu_regs pb) = r_vmpidr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vttbr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vttbr_el2 (cpu_regs pb) = r_vttbr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vtcr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vtcr_el2 (cpu_regs pb) = r_vtcr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_hcr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_hcr_el2 (cpu_regs pb) = r_hcr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_actlr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_actlr_el2 (cpu_regs pb) = r_actlr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_afsr0_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_afsr0_el2 (cpu_regs pb) = r_afsr0_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_afsr1_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_afsr1_el2 (cpu_regs pb) = r_afsr1_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_amair_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_amair_el2 (cpu_regs pb) = r_amair_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_cptr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_cptr_el2 (cpu_regs pb) = r_cptr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_elr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_elr_el2 (cpu_regs pb) = r_elr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_esr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_esr_el2 (cpu_regs pb) = r_esr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_far_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_far_el2 (cpu_regs pb) = r_far_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_hacr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_hacr_el2 (cpu_regs pb) = r_hacr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_hpfar_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_hpfar_el2 (cpu_regs pb) = r_hpfar_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_hstr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_hstr_el2 (cpu_regs pb) = r_hstr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_mair_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_mair_el2 (cpu_regs pb) = r_mair_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_mpam_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_mpam_el2 (cpu_regs pb) = r_mpam_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_mpamhcr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_mpamhcr_el2 (cpu_regs pb) = r_mpamhcr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_pmscr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_pmscr_el2 (cpu_regs pb) = r_pmscr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_sctlr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_sctlr_el2 (cpu_regs pb) = r_sctlr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_scxtnum_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_scxtnum_el2 (cpu_regs pb) = r_scxtnum_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_sp_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_sp_el2 (cpu_regs pb) = r_sp_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_spsr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_spsr_el2 (cpu_regs pb) = r_spsr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tcr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_tcr_el2 (cpu_regs pb) = r_tcr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tfsr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_tfsr_el2 (cpu_regs pb) = r_tfsr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tpidr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_tpidr_el2 (cpu_regs pb) = r_tpidr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_trfcr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_trfcr_el2 (cpu_regs pb) = r_trfcr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_ttbr0_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_ttbr0_el2 (cpu_regs pb) = r_ttbr0_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_ttbr1_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_ttbr1_el2 (cpu_regs pb) = r_ttbr1_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vbar_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vbar_el2 (cpu_regs pb) = r_vbar_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vdisr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vdisr_el2 (cpu_regs pb) = r_vdisr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vncr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vncr_el2 (cpu_regs pb) = r_vncr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vpidr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vpidr_el2 (cpu_regs pb) = r_vpidr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vsesr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vsesr_el2 (cpu_regs pb) = r_vsesr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vstcr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vstcr_el2 (cpu_regs pb) = r_vstcr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_vsttbr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_vsttbr_el2 (cpu_regs pb) = r_vsttbr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_zcr_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_zcr_el2 (cpu_regs pb) = r_zcr_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_icc_sre_el2:
forall pa pb (Hrelate: relate_priv pa pb), r_icc_sre_el2 (cpu_regs pb) = r_icc_sre_el2 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_icc_hppir1_el1:
forall pa pb (Hrelate: relate_priv pa pb), r_icc_hppir1_el1 (cpu_regs pb) = r_icc_hppir1_el1 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_spsr_el3:
forall pa pb (Hrelate: relate_priv pa pb), r_spsr_el3 (cpu_regs pb) = r_spsr_el3 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_elr_el3:
forall pa pb (Hrelate: relate_priv pa pb), r_elr_el3 (cpu_regs pb) = r_elr_el3 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_esr_el3:
forall pa pb (Hrelate: relate_priv pa pb), r_esr_el3 (cpu_regs pb) = r_esr_el3 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_scr_el3:
forall pa pb (Hrelate: relate_priv pa pb), r_scr_el3 (cpu_regs pb) = r_scr_el3 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Lemma relate_priv_r_tpidr_el3:
forall pa pb (Hrelate: relate_priv pa pb), r_tpidr_el3 (cpu_regs pb) = r_tpidr_el3 (cpu_regs pa).
Proof. intros; inv Hrelate. inv cpu_regs_eq; grewrite; reflexivity. Qed.
Ltac rewrite_sec_rel :=
repeat
match goal with
| [H: relate_priv ?a ?b |- context[asm_regs ?b]] =>
rewrite (relate_priv_asm_regs a b H)
| [H: relate_priv ?a ?b |- context[id_regs ?b]] =>
rewrite (relate_priv_id_regs a b H)
| [H: relate_priv ?a ?b |- context[buffer ?b]] =>
rewrite (relate_priv_buffer a b H)
| [H: relate_priv ?a ?b |- context[ns_regs_el2 ?b]] =>
rewrite (relate_priv_ns_regs_el2 a b H)
| [H: relate_priv ?a ?b |- context[realm_params ?b]] =>
rewrite (relate_priv_realm_params a b H)
| [H: relate_priv ?a ?b |- context[rec_params ?b]] =>
rewrite (relate_priv_rec_params a b H)
| [H: relate_priv ?a ?b |- context[rec_run ?b]] =>
rewrite (relate_priv_rec_run a b H)
| [H: relate_priv ?a ?b |- context[retval ?b]] =>
rewrite (relate_priv_retval a b H)
| [H: relate_priv ?a ?b |- context[locked_g ?b]] =>
rewrite (relate_priv_locked_g a b H)
| [H: relate_priv ?a ?b |- context[wi_last_level ?b]] =>
rewrite (relate_priv_wi_last_level a b H)
| [H: relate_priv ?a ?b |- context[wi_llt ?b]] =>
rewrite (relate_priv_wi_llt a b H)
| [H: relate_priv ?a ?b |- context[wi_index ?b]] =>
rewrite (relate_priv_wi_index a b H)
| [H: relate_priv ?a ?b |- context[rvic_x0 ?b]] =>
rewrite (relate_priv_rvic_x0 a b H)
| [H: relate_priv ?a ?b |- context[rvic_x1 ?b]] =>
rewrite (relate_priv_rvic_x1 a b H)
| [H: relate_priv ?a ?b |- context[rvic_x2 ?b]] =>
rewrite (relate_priv_rvic_x2 a b H)
| [H: relate_priv ?a ?b |- context[rvic_x3 ?b]] =>
rewrite (relate_priv_rvic_x3 a b H)
| [H: relate_priv ?a ?b |- context[rvic_target ?b]] =>
rewrite (relate_priv_rvic_target a b H)
| [H: relate_priv ?a ?b |- context[rvic_ns_notify ?b]] =>
rewrite (relate_priv_rvic_ns_notify a b H)
| [H: relate_priv ?a ?b |- context[psci_x0 ?b]] =>
rewrite (relate_priv_psci_x0 a b H)
| [H: relate_priv ?a ?b |- context[psci_x1 ?b]] =>
rewrite (relate_priv_psci_x1 a b H)
| [H: relate_priv ?a ?b |- context[psci_x2 ?b]] =>
rewrite (relate_priv_psci_x2 a b H)
| [H: relate_priv ?a ?b |- context[psci_x3 ?b]] =>
rewrite (relate_priv_psci_x3 a b H)
| [H: relate_priv ?a ?b |- context[psci_forward_x0 ?b]] =>
rewrite (relate_priv_psci_forward_x0 a b H)
| [H: relate_priv ?a ?b |- context[psci_forward_x1 ?b]] =>
rewrite (relate_priv_psci_forward_x1 a b H)
| [H: relate_priv ?a ?b |- context[psci_forward_x2 ?b]] =>
rewrite (relate_priv_psci_forward_x2 a b H)
| [H: relate_priv ?a ?b |- context[psci_forward_x3 ?b]] =>
rewrite (relate_priv_psci_forward_x3 a b H)
| [H: relate_priv ?a ?b |- context[psci_forward_psci_call ?b]] =>
rewrite (relate_priv_psci_forward_psci_call a b H)
| [H: relate_priv ?a ?b |- context[target_rec ?b]] =>
rewrite (relate_priv_target_rec a b H)
| [H: relate_priv ?a ?b |- context[el2_stack ?b]] =>
rewrite (relate_priv_el2_stack a b H)
| [H: relate_priv ?a ?b |- context[el3_stack ?b]] =>
rewrite (relate_priv_el3_stack a b H)
| [H: relate_priv ?a ?b |- context[ns_regs_el3 ?b]] =>
rewrite (relate_priv_ns_regs_el3 a b H)
| [H: relate_priv ?a ?b |- context[realm_regs_el3 ?b]] =>
rewrite (relate_priv_realm_regs_el3 a b H)
| [H: relate_priv ?a ?b |- context[cur_rec ?b]] =>
rewrite (relate_priv_cur_rec a b H)
| [H: relate_priv ?a ?b |- context[mstage ?b]] =>
rewrite (relate_priv_mstage a b H)
| [H: relate_priv ?a ?b |- context[trap_reason ?b]] =>
rewrite (relate_priv_trap_reason a b H)
| [H: relate_priv ?a ?b |- context[trap_type ?b]] =>
rewrite (relate_priv_trap_type a b H)
| [H: relate_priv ?a ?b |- context[r_lr (cpu_regs ?b)]] =>
rewrite (relate_priv_r_lr a b H)
| [H: relate_priv ?a ?b |- context[r_cntp_ctl_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_cntp_ctl_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_cntp_cval_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_cntp_cval_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_cntp_tval_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_cntp_tval_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_cntv_ctl_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_cntv_ctl_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_cntv_cval_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_cntv_cval_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_cntv_tval_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_cntv_tval_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_sp_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_sp_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_pmcr_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_pmcr_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_pmuserenr_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_pmuserenr_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_tpidrro_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_tpidrro_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_tpidr_el0 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_tpidr_el0 a b H)
| [H: relate_priv ?a ?b |- context[r_sp_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_sp_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_elr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_elr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_spsr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_spsr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_csselr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_csselr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_sctlr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_sctlr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_actlr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_actlr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_cpacr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_cpacr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_zcr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_zcr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_ttbr0_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_ttbr0_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_ttbr1_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_ttbr1_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_tcr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_tcr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_esr_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_esr_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_afsr0_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_afsr0_el1 a b H)
| [H: relate_priv ?a ?b |- context[r_afsr1_el1 (cpu_regs ?b)]] =>
rewrite (relate_priv_r_afsr1_el1 a b H)