Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add first draft of Accelerate example #178

Merged
merged 4 commits into from
Jun 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,338 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "PWVljpddz_vN"
},
"source": [
"<img src=\"https://cdn.comet.ml/img/notebook_logo.png\">"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "A0-thQauBRRL"
},
"source": [
"[Comet](https://www.comet.com/site/products/ml-experiment-tracking/??utm_source=accelerate&utm_medium=colab&utm_campaign=comet_examples) is an MLOps Platform that is designed to help Data Scientists and Teams build better models faster! Comet provides tooling to track, Explain, Manage, and Monitor your models in a single place! It works with Jupyter Notebooks and Scripts and most importantly it's 100% free to get started!\n",
"\n",
"[Hugging Face Accelerate](https://github.com/huggingface/accelerate) was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.\n",
"\n",
"Instrument Accelerate with Comet to start managing experiments, create dataset versions and track hyperparameters for faster and easier reproducibility and collaboration.\n",
"\n",
"[Find more information about our integration with Accelerate](https://www.comet.ml/docs/v2/integrations/ml-frameworks/transformers/?utm_source=accelerate&utm_medium=colab&utm_campaign=comet_examples)\n",
"\n",
"Curious about how Comet can help you build better models, faster? Find out more about [Comet](https://www.comet.com/site/products/ml-experiment-tracking/?utm_source=accelerate&utm_medium=colab&utm_campaign=comet_examples) and our [other integrations](https://www.comet.com/docs/v2/integrations/overview/?utm_source=accelerate&utm_medium=colab&utm_campaign=comet_examples)\n",
"\n",
"Get a preview for what's to come. Check out a completed experiment created from this notebook [here](https://www.comet.com/examples/comet-example-accelerate-notebook/0373dd068a484105b16c4053407f1bb2/?utm_source=accelerate&utm_medium=colab&utm_campaign=comet_examples).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "V2UZtdWitSLf"
},
"source": [
"# Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vIQsPNvatQIU"
},
"outputs": [],
"source": [
"%pip install \"comet_ml>=3.31.5\" torch torchvision tqdm \"accelerate>=0.17.0\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lpCFdN33tday"
},
"source": [
"# Initialize Comet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kGyz_i-dtfk4"
},
"outputs": [],
"source": [
"import comet_ml\n",
"\n",
"comet_ml.init()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zMVITKxktj7H"
},
"source": [
"# Import Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cuRPreREp8y0"
},
"outputs": [],
"source": [
"from accelerate import Accelerator\n",
"from torch.autograd import Variable\n",
"from tqdm import tqdm\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torchvision.datasets as datasets\n",
"import torchvision.transforms as transforms"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "a15YYRcKp9xV"
},
"source": [
"# Define Parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rZ9biJqMtMq0"
},
"outputs": [],
"source": [
"hyper_params = {\"batch_size\": 100, \"num_epochs\": 3, \"learning_rate\": 0.01}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "htcACg9grtTe"
},
"source": [
"# Load Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "crCfZX9Zrufn"
},
"outputs": [],
"source": [
"# MNIST Dataset\n",
"train_dataset = datasets.MNIST(\n",
" root=\"./data/\", train=True, transform=transforms.ToTensor(), download=True\n",
")\n",
"\n",
"test_dataset = datasets.MNIST(\n",
" root=\"./data/\", train=False, transform=transforms.ToTensor()\n",
")\n",
"\n",
"# Data Loader (Input Pipeline)\n",
"train_loader = torch.utils.data.DataLoader(\n",
" dataset=train_dataset, batch_size=hyper_params[\"batch_size\"], shuffle=True\n",
")\n",
"\n",
"test_loader = torch.utils.data.DataLoader(\n",
" dataset=test_dataset, batch_size=hyper_params[\"batch_size\"], shuffle=False\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vqJaYzGvryUz"
},
"source": [
"# Define Model and Optimizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pMRQESULrzXg"
},
"outputs": [],
"source": [
"accelerator = Accelerator(log_with=\"comet_ml\")\n",
"accelerator.init_trackers(\n",
" project_name=\"comet-example-accelerate-notebook\", config=hyper_params\n",
")\n",
"device = accelerator.device\n",
"\n",
"\n",
"class Net(nn.Module):\n",
" def __init__(self):\n",
" super(Net, self).__init__()\n",
" self.conv1 = nn.Conv2d(1, 32, 3, 1)\n",
" self.conv2 = nn.Conv2d(32, 64, 3, 1)\n",
" self.dropout1 = nn.Dropout(0.25)\n",
" self.dropout2 = nn.Dropout(0.5)\n",
" self.fc1 = nn.Linear(9216, 128)\n",
" self.fc2 = nn.Linear(128, 10)\n",
"\n",
" def forward(self, x):\n",
" x = self.conv1(x)\n",
" x = F.relu(x)\n",
" x = self.conv2(x)\n",
" x = F.relu(x)\n",
" x = F.max_pool2d(x, 2)\n",
" x = self.dropout1(x)\n",
" x = torch.flatten(x, 1)\n",
" x = self.fc1(x)\n",
" x = F.relu(x)\n",
" x = self.dropout2(x)\n",
" x = self.fc2(x)\n",
"\n",
" return x\n",
"\n",
"\n",
"model = Net().to(device)\n",
"\n",
"# Loss and Optimizer\n",
"criterion = nn.CrossEntropyLoss()\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=hyper_params[\"learning_rate\"])\n",
"\n",
"model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7hgzjMnYqZPQ"
},
"source": [
"# Train a Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zmb3DAsXqa4K"
},
"outputs": [],
"source": [
"def train(model, optimizer, criterion, dataloader, epoch):\n",
" model.train()\n",
" total_loss = 0\n",
" correct = 0\n",
" for batch_idx, (images, labels) in enumerate(\n",
" tqdm(dataloader, total=len(dataloader))\n",
" ):\n",
" optimizer.zero_grad()\n",
" images = images.to(device)\n",
" labels = labels.to(device)\n",
"\n",
" outputs = model(images)\n",
"\n",
" loss = criterion(outputs, labels)\n",
" pred = outputs.argmax(\n",
" dim=1, keepdim=True\n",
" ) # get the index of the max log-probability\n",
"\n",
" accelerator.backward(loss)\n",
" optimizer.step()\n",
"\n",
" # Compute train accuracy\n",
" batch_correct = pred.eq(labels.view_as(pred)).sum().item()\n",
" batch_total = labels.size(0)\n",
"\n",
" total_loss += loss.item()\n",
" correct += batch_correct\n",
"\n",
" # Log batch_accuracy to Comet; step is each batch\n",
" accelerator.log({\"batch_accuracy\": batch_correct / batch_total})\n",
"\n",
" total_loss /= len(dataloader.dataset)\n",
" correct /= len(dataloader.dataset)\n",
"\n",
" # Log data at an epoch level\n",
" accelerator.get_tracker(\"comet_ml\").tracker.log_metrics(\n",
" {\"accuracy\": correct, \"loss\": total_loss}, epoch=epoch\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kpNDbdvQuPZw"
},
"outputs": [],
"source": [
"# Train the Model\n",
"print(\"Running Model Training\")\n",
"\n",
"max_epochs = hyper_params[\"num_epochs\"]\n",
"for epoch in range(max_epochs + 1):\n",
" print(\"Epoch: {}/{}\".format(epoch, max_epochs))\n",
" train(model, optimizer, criterion, train_loader, epoch)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "F__x_H052a1E"
},
"source": [
"# End Experiment "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YsTMrwd_2cmo"
},
"outputs": [],
"source": [
"accelerator.end_training()"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Comet and Pytorch.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading