-
Notifications
You must be signed in to change notification settings - Fork 8
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
improve speed of function fit_parameters_loop #9
base: devel
Are you sure you want to change the base?
Conversation
Hi Thomas, thanks. I'll take a look right away. I am a bit confused, because first you say
but in the end
Both times, you talk about the benchmark (2 seconds / 5% speed-up), right?
I am a bit concerned about this, can you investigate this a bit more and quantify how much the results change? I'll also make a few inline comments about some specific things. Best, |
Pred_var_unreg <- mply_dbl(seq_Y, function(i){ | ||
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix | ||
vapply(seq_mM, function(j) | ||
mM_t[, j] %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,], |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
t(model_matrix[j,])
and mM_t[, j]
are not the same!
Small example to illustrate:
mat <- matrix(1:32, nrow=8, ncol = 4)
tmat <- t(mat)
# treated as a row vector
t(mat[3,])
#> [,1] [,2] [,3] [,4]
#> [1,] 3 11 19 27
# treated as a column Vector!
tmat[,3]
#> [1] 3 11 19 27
Created on 2021-01-27 by the reprex package (v0.3.0)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
That's true, but anyway they yield the same result:
Pred_init_var <- mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_init[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
mM_t[, j] %*% coef_var_matrix_i %*% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))
Pred_init_var2 <- mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_init[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
t(model_matrix[j,]) %*% coef_var_matrix_i %*% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))
identical(Pred_init_var2, Pred_init_var)
[1] TRUE
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
microbenchmark::microbenchmark(
Pred_init_var = mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_init[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
mM_t[, j] %*% coef_var_matrix_i %*% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y)),
Pred_init_var2 = mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_init[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
t(model_matrix[j,]) %*% coef_var_matrix_i %*% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))
)
Unit: milliseconds
expr min lq mean median uq max neval cld
Pred_init_var 43.9988 47.41380 51.77982 50.67965 55.03035 75.4580 100 a
Pred_init_var2 72.4167 78.46865 84.72939 83.47805 87.49775 129.3417 100 b
Pred_var_reg <- mply_dbl(seq_Y, function(i){ | ||
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix | ||
vapply(seq_mM, function(j) | ||
mM_t[, j] %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,], |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
same problem as above. Could this be the reason that bench::mark()
detects different results?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Well, the bench::mark()
gives different results above even when using the same function proDA::fit_parameters_loop
(see above).
microbenchmark::microbenchmark(
Pred_var_unreg = mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
mM_t[, j] %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y)),
Pred_var_unreg2 = mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
t(model_matrix[j,]) %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))
)
Unit: milliseconds
expr min lq mean median uq max neval cld
Pred_var_unreg 250.6602 263.1104 281.4725 267.6236 279.7790 704.7041 100 a
Pred_var_unreg2 296.5720 310.2032 333.9179 317.6835 342.1173 965.6829 100 b
Pred_reg <- msply_dbl(res_reg, function(x) x$coefficients) %zero_dom_mat_mult% mM_t | ||
|
||
Pred_var_unreg <- mply_dbl(seq_Y, function(i){ | ||
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this is probably a good idea, getting stuff from a list can be quite slow :)
|
||
mM_t <- t(model_matrix) | ||
seq_Y <- seq_len(nrow(Y)) | ||
seq_mM <- seq_len(nrow(model_matrix)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you check how big the speed-up due to those two changes is. And if it is not signifcant revert the changes?
The additional variables seq_Y
and seq_mM
makes the code more difficult to understand, because they are two additional things that you need to keep in your head when you try to understand what is going at the end of the function.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
microbenchmark::microbenchmark(
Pred_init_var = {
seq_Y <- seq_len(nrow(Y))
seq_mM <- seq_len(nrow(model_matrix))
Pred_init_var <- mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_init[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
mM_t[, j] %*% coef_var_matrix_i %*% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=n_samples)
},
Pred_init_var2 = mply_dbl(seq_len(nrow(Y)), function(i){
coef_var_matrix_i <- res_init[[i]]$coef_variance_matrix
vapply(seq_len(nrow(model_matrix)), function(j)
mM_t[, j] %*% coef_var_matrix_i %*% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=n_samples)
)
Unit: milliseconds
expr min lq mean median uq max neval cld
Pred_init_var 42.2649 46.95005 51.42409 50.29355 54.08615 76.6705 100 a
Pred_init_var2 44.1800 48.31820 52.47180 50.84440 54.41230 78.1734 100 a
A slight increase here!
The following two expressions are in the convergence loop:
microbenchmark::microbenchmark(
Pred_var_unreg = {
mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
mM_t[, j] %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=n_samples)
},
Pred_var_unreg2 = {
mply_dbl(seq_len(nrow(Y)), function(i){
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix
vapply(seq_len(nrow(model_matrix)), function(j)
mM_t[, j] %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=n_samples)
}, times = 200)
Unit: milliseconds
expr min lq mean median uq max neval cld
Pred_var_unreg 250.7857 272.2618 294.7421 291.3625 305.8123 903.5610 200 a
Pred_var_unreg2 252.7301 276.2538 300.5611 289.7970 305.4967 796.0543 200 a
There are again some higher max values (not sure why it happens)
microbenchmark::microbenchmark(
Pred_var_reg = {mply_dbl(seq_Y, function(i){
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix
vapply(seq_mM, function(j)
mM_t[, j] %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))},
Pred_var_reg2 = {mply_dbl(seq_len(nrow(Y)), function(i){
coef_var_matrix_i <- res_reg[[i]]$coef_variance_matrix
vapply(seq_len(nrow(model_matrix)), function(j)
mM_t[, j] %zero_dom_mat_mult% coef_var_matrix_i %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))},
times = 200)
Unit: milliseconds
expr min lq mean median uq max neval cld
Pred_var_reg 241.0048 260.8333 279.9133 266.5539 293.6949 383.3302 200 a
Pred_var_reg2 245.4748 261.0977 290.8885 275.2618 308.8479 771.8275 200 b
Again the version with pre-calculated values is slightly faster (and now the old version shows these distortions).
I guess these are only slight improvements anyway coming from pre-calculating these values. It's on you if you think the old version with respect to code maintenance is superior.
y_na <- is.na(Y) | ||
Y_compl[y_na] <- rnorm(sum(y_na), mean=quantile(Y, probs=0.1, na.rm=TRUE), sd=sd(Y,na.rm=TRUE)/5) | ||
|
||
split_Y_compl <- split(Y_compl, factor(rownames(Y_compl), rownames(Y_compl))) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why do you pass rownames(Y_compl)
to factor twice?
What happens if the rownames are not unique? (I know one shouldn't make objects with duplicated rownames, but you can, which means that people probably do.)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
mat <- matrix(1:20, nrow=5, ncol = 4)
rownames(mat) <- paste0("row_", 1:5)
rownames(mat)[3] <- "row_2"
split(mat, factor(rownames(mat)))
#> $row_1
#> [1] 1 6 11 16
#>
#> $row_2
#> [1] 2 3 7 8 12 13 17 18
#>
#> $row_4
#> [1] 4 9 14 19
#>
#> $row_5
#> [1] 5 10 15 20
Created on 2021-01-27 by the reprex package (v0.3.0)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you please validate that split is actually faster than lapply()
, because it makes the code more difficult to understand and maintain.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Agreed, maybe it's not a good idea to use split
here given the points you addressed. I will revert this.
|
||
split_Y_compl <- split(Y_compl, factor(rownames(Y_compl), rownames(Y_compl))) | ||
names(split_Y_compl) <- NULL | ||
res_init <- lapply(split_Y_compl, function(i){ |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you choose a more descriptive variable name. For me i
always is an index. I think for example y_i
would be better :)
I have found another bunch of code that could be slightly optimised:
could become:
microbenchmark the change results in slight decrease:
|
Hi @const-ae
following the same logic of pull request #8 I had another look at the function
fit_parameters_loop
and improved slightly the performance of the function. It is now slightly faster than the original version (see below, I hope it is worth checking).However, there is a problem, which doesn't allow to compare directly if the two versions yield the same result, see:
I guess this is doe to some random number generation!
For now, see
bench::mark
withcheck=FALSE
:Short script to generate the input variables:
Surprisingly, these updates (I guess most comes from the
lapply
changes result in the considerable speed improvements.