-
-
Notifications
You must be signed in to change notification settings - Fork 264
/
motion_module.py
354 lines (283 loc) · 12.8 KB
/
motion_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from enum import Enum
from typing import Optional
import math
import torch
from torch import nn
from einops import rearrange
import torch.nn as disable_weight_init
from ldm.modules.attention import FeedForward
class MotionModuleType(Enum):
AnimateDiffV1 = "AnimateDiff V1, Yuwei Guo, Shanghai AI Lab"
AnimateDiffV2 = "AnimateDiff V2, Yuwei Guo, Shanghai AI Lab"
AnimateDiffV3 = "AnimateDiff V3, Yuwei Guo, Shanghai AI Lab"
AnimateDiffXL = "AnimateDiff SDXL, Yuwei Guo, Shanghai AI Lab"
AnimateLCM = "AnimateLCM, Fu-Yun Wang, MMLab@CUHK"
SparseCtrl = "SparseCtrl, Yuwei Guo, Shanghai AI Lab"
HotShotXL = "HotShot-XL, John Mullan, Natural Synthetics Inc"
@staticmethod
def get_mm_type(state_dict: dict[str, torch.Tensor]):
keys = list(state_dict.keys())
if any(["mid_block" in k for k in keys]):
if not any(["pe" in k for k in keys]):
return MotionModuleType.AnimateLCM
return MotionModuleType.AnimateDiffV2
elif any(["down_blocks.3" in k for k in keys]):
if 32 in next((state_dict[key] for key in state_dict if 'pe' in key), None).shape:
return MotionModuleType.AnimateDiffV3
else:
return MotionModuleType.AnimateDiffV1
else:
if 32 in next((state_dict[key] for key in state_dict if 'pe' in key), None).shape:
return MotionModuleType.AnimateDiffXL
else:
return MotionModuleType.HotShotXL
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class MotionWrapper(nn.Module):
def __init__(self, mm_name: str, mm_hash: str, mm_type: MotionModuleType, operations = disable_weight_init):
super().__init__()
self.mm_name = mm_name
self.mm_type = mm_type
self.mm_hash = mm_hash
max_len = 64 if mm_type == MotionModuleType.AnimateLCM else (24 if self.enable_gn_hack() else 32)
in_channels = (320, 640, 1280) if self.is_xl else (320, 640, 1280, 1280)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
for c in in_channels:
if mm_type in [MotionModuleType.SparseCtrl]:
self.down_blocks.append(MotionModule(c, num_mm=2, max_len=max_len, attention_block_types=("Temporal_Self", ), operations=operations))
else:
self.down_blocks.append(MotionModule(c, num_mm=2, max_len=max_len, operations=operations))
self.up_blocks.insert(0,MotionModule(c, num_mm=3, max_len=max_len, operations=operations))
if self.is_v2:
self.mid_block = MotionModule(1280, num_mm=1, max_len=max_len, operations=operations)
def enable_gn_hack(self):
return self.mm_type in [MotionModuleType.AnimateDiffV1, MotionModuleType.HotShotXL]
@property
def is_xl(self):
return self.mm_type in [MotionModuleType.AnimateDiffXL, MotionModuleType.HotShotXL]
@property
def is_adxl(self):
return self.mm_type == MotionModuleType.AnimateDiffXL
@property
def is_hotshot(self):
return self.mm_type == MotionModuleType.HotShotXL
@property
def is_v2(self):
return self.mm_type in [MotionModuleType.AnimateDiffV2, MotionModuleType.AnimateLCM]
class MotionModule(nn.Module):
def __init__(self, in_channels, num_mm, max_len, attention_block_types=("Temporal_Self", "Temporal_Self"), operations = disable_weight_init):
super().__init__()
self.motion_modules = nn.ModuleList([
VanillaTemporalModule(
in_channels=in_channels,
temporal_position_encoding_max_len=max_len,
attention_block_types=attention_block_types,
operations=operations,)
for _ in range(num_mm)])
def forward(self, x: torch.Tensor):
for mm in self.motion_modules:
x = mm(x)
return x
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads = 8,
num_transformer_block = 1,
attention_block_types =( "Temporal_Self", "Temporal_Self" ),
temporal_position_encoding_max_len = 24,
temporal_attention_dim_div = 1,
zero_initialize = True,
operations = disable_weight_init,
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
operations=operations,
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
def forward(self, x: torch.Tensor):
return self.temporal_transformer(x)
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
dropout = 0.0,
norm_num_groups = 32,
activation_fn = "geglu",
attention_bias = False,
upcast_attention = False,
temporal_position_encoding_max_len = 24,
operations = disable_weight_init,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
self.norm = operations.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = operations.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
operations=operations,
)
for _ in range(num_layers)
]
)
self.proj_out = operations.Linear(inner_dim, in_channels)
def forward(self, hidden_states: torch.Tensor):
_, _, height, _ = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states).type(hidden_states.dtype)
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
hidden_states = self.proj_in(hidden_states)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height)
output = hidden_states + residual
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
dropout = 0.0,
activation_fn = "geglu",
attention_bias = False,
upcast_attention = False,
temporal_position_encoding_max_len = 24,
operations = disable_weight_init,
):
super().__init__()
attention_blocks = []
norms = []
for _ in attention_block_types:
attention_blocks.append(
VersatileAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
operations=operations,
)
)
norms.append(operations.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn=='geglu'))
self.ff_norm = operations.LayerNorm(dim)
def forward(self, hidden_states: torch.Tensor):
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states).type(hidden_states.dtype)
hidden_states = attention_block(norm_hidden_states) + hidden_states
hidden_states = self.ff(self.ff_norm(hidden_states).type(hidden_states.dtype)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout = 0.,
max_len = 24,
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)].to(x)
return self.dropout(x)
class CrossAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
operations = disable_weight_init,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.scale = dim_head**-0.5
self.heads = heads
self.to_q = operations.Linear(query_dim, inner_dim, bias=bias)
self.to_k = operations.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = operations.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim), nn.Dropout(dropout))
class VersatileAttention(CrossAttention):
def __init__(
self,
temporal_position_encoding_max_len = 24,
*args, **kwargs
):
super().__init__(*args, **kwargs)
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
max_len=temporal_position_encoding_max_len)
def forward(self, x: torch.Tensor):
from scripts.animatediff_mm import mm_animatediff
video_length = mm_animatediff.ad_params.batch_size
d = x.shape[1]
x = rearrange(x, "(b f) d c -> (b d) f c", f=video_length)
x = self.pos_encoder(x)
q = self.to_q(x)
k = self.to_k(x)
v = self.to_v(x)
q, k, v = map(lambda t: rearrange(t, 'b s (h d) -> (b h) s d', h=self.heads), (q, k, v))
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, '(b h) s d -> b s (h d)', h=self.heads)
x = self.to_out(x) # linear proj and dropout
x = rearrange(x, "(b d) f c -> (b f) d c", d=d)
return x