On the topic of circle packing, optimisation, linear programming, ...
- Circle packing
- Umwandlung in planare Graphen (Circle Packing Theorem, siehe auch Computing Circle Packing Representations of Planar Graphs)
- Verbindung zu Parität
- Soddy-Kreis
Critical packing densitiy
- S. P. Fekete, S. Morr, and C. Scheffer. Split packing: Algorithms for packing circles with optimal worst-case density. Discrete & Computational Geometry, 2018.
- S. Morr. Split packing: An algorithm for packing circles with optimal worst-case density. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 99–109, 2017.
The benchmark for circle packing: Packomania.
-
Galiev, S. I., & Lisafina, M. S. (2013). Linear models for the approximate solution of the problem of packing equal circles into a given domain. European Journal of Operational Research, 230(3), 505–514. https://doi.org/10.1016/J.EJOR.2013.04.050
-
Becker, A. T., Fekete, S. P., Keldenich, P., Morr, S., & Scheffer, C. (2019). Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Exposition). DROPS-IDN/10467, 129. https://doi.org/10.4230/LIPICS.SOCG.2019.63
-
Specht, E. (2023, March 1). Packomania. http://www.packomania.com
-
Huang, W. Q., Li, Y., Akeb, H., & Li, C. M. (2005). Greedy algorithms for packing unequal circles into a rectangular container. Journal of the Operational Research Society, 56(5), 539–548. https://doi.org/10.1057/PALGRAVE.JORS.2601836/METRICS
-
López Soto, C. O. (2013). Formulation space search for two-dimensional packing problems [Brunel University School of Information Systems, Computing and Mathematics Theses PhD Theses]. http://bura.brunel.ac.uk/handle/2438/7455
-
López, C. O., & Beasley, J. E. (2011). A heuristic for the circle packing problem with a variety of containers. European Journal of Operational Research, 214(3), 512–525. https://doi.org/10.1016/J.EJOR.2011.04.024
-
Addis, B., Locatelli, M., & Schoen, F. (2008). Efficiently packing unequal disks in a circle. Operations Research Letters, 36(1), 37–42. https://doi.org/10.1016/J.ORL.2007.03.001
-
Dong, S., Lee, Y. T., & Quanrud, K. (2019). Computing Circle Packing Representations of Planar Graphs. https://doi.org/10.48550/arxiv.1911.00612
-
He, K., Huang, M., & Yang, C. (2015). An action-space-based global optimization algorithm for packing circles into a square container. Computers & Operations Research, 58, 67–74. https://doi.org/10.1016/J.COR.2014.12.010
- Effiziente Algorithmen. Lineare Programme 1/2. Walter Unger
- Introduction to Operations Research 9th Edition. Hillier, Lieberman
- Quantum computing: QuTiP, Quantum Toolbox in Python
- AI: TensorFlow