-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgrid.cc
375 lines (327 loc) · 12.1 KB
/
grid.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/**
* @file grid.cc
* @author Luca Maccione
* @email luca.maccione@desy.de
* @brief See the .h file.
*/
#include "grid.h"
#include "input.h"
#include "constants.h"
#include <cmath>
#include <fstream>
#include <limits>
using namespace std;
TGrid::TGrid(Input* in) {
if (in->feedback >1) cout << "Welcome to the grid constructor" << endl;
dimx = dimy = dimr = 1; // 2D<->3D compatibility
dimz = in->numz;
zmax = in->zmax;
if (in->feedback >1) cout << "DimZ = "<<dimz<<endl;
string divz;
stringstream temp;
double next_point;
if (in->dimz_equidistant)
{
if (in->feedback >1) cout << "// [MW] z bins equidistant" << endl;
zmin = -zmax;
for (int i=0; i<(dimz-1); ++i)
{
double val = zmin + (double)i/(dimz-1)*(zmax-zmin);
//mw: round to 1e-8, solves precision issues
if(val!=0) val = (long)((1e8*val)+(val/fabs(val))*.5)/1e8;
z.push_back( ( fabs(val) < 1e-8 ) ? 0. : val);
}
z.push_back(zmax);
}
else
{
divz = in->divz;
int i=0,j;
while(i<dimz)
{
j = divz.find(';');
temp << divz.substr(0,j);
temp >> next_point;
z.push_back(in->zmax * next_point);
divz = divz.substr(j+1);
i++;
temp.clear();
}
//rescale, so that in->zmax is really the maximum absolute value
double z_rescale = in->zmax/max(abs(z.front()), abs(z.back()));
for( vector<double>::iterator it = z.begin(); it!=z.end(); ++it) *it *= z_rescale;
}
if (in->feedback >1){
cout << "// [MW] z[] grid; setting DimZ = " << dimz << endl;
for (int i=0;i<dimz;i++)
{
cout<<"z["<<i<<"] = " << z[i];
if(in->gridtype=="3D" && in->LB_shape == "Cuboid" && (abs(z[i]-in->zobs)<=in->LB_az))cout << " /* Local Cuboid */ ";
cout << "; ";
}
cout << endl;
}
//MW130618: fill dz_up and dz_down vectors to speed up the evolutor
dz_up.push_back(z[1]-z[0]);
dz_down.push_back(z[1]-z[0]);
for (int i=1;i<dimz-1;i++)
{
dz_up.push_back(z[i+1]-z[i]);
dz_down.push_back(z[i]-z[i-1]);
}
dz_up.push_back(z[dimz-1]-z[dimz-2]);
dz_down.push_back(z[dimz-1]-z[dimz-2]);
if (in->feedback >1) cout << "dimz is " << dimz << " and z holds " << z.size() << " elements and dz_up " << dz_up.size() << " and dz_down " << dz_down.size() << endl;
Ekin_factor = in->Ekfact;
Ekmin = in->Ekmin;
Ekmax = in->Ekmax;
DeltalogE = log(Ekin_factor);
dimE = int(log(Ekmax/Ekmin)/DeltalogE + 1.9);
for (int i = 0; i < dimE; ++i) {
if (dimE == 1) Ek.push_back(Ekmin);
else Ek.push_back(exp(log(Ekmin)+(double)i*log(Ekin_factor)));
gamma.push_back(1.0+Ek.back()/mp);
beta.push_back(sqrt(1.0-1.0/pow(gamma.back(),2)));
momentum.push_back(gamma.back()*mp*beta.back());
gammael.push_back(1.0+Ek.back()/MeleGeV);
betael.push_back(sqrt(1.0-1.0/pow(gammael.back(),2)));
momentumel.push_back(gammael.back()*MeleGeV*betael.back());
// cout << "[MW-DEBUG GRID] p: " << i << "/" << dimE << " ... " << gamma.back() << " " <<momentum.back() << " " << beta.back() << " " << mp << endl;
// cout << "[MW-DEBUG GRID] e: " << i << "/" << dimE << " ... " << gammael.back() << " " <<momentumel.back() << " " << betael.back() << " " << MeleGeV << endl;
}
}
TGrid2D::TGrid2D(Input* in) : TGrid(in) {
type = "2D";
dimr = in->numr;
string divr;
stringstream temp;
double next_point;
if (in->dimr_equidistant) {
//cout << "// [MW] r bins equidistant" << endl;
if (in->feedback >1) cout << "Building the 2D equidistant grid " << endl;
for (int i=0; i<(dimr-1); ++i)
{
double val = in->Rmin + (double)i/(dimr-1)*(in->Rmax - in->Rmin);
// cout << i << " val " << val << " rmin " << in->Rmin << " " << i/(dimr-1) << " " << (double)i/(dimr-1)*(in->Rmax - in->Rmin) << endl;
//mw: round to 1e-8, solves precision issues
if(val!=0) val = (long)((1e8*val)+(val/abs(val))*.5)/1e8;
r.push_back( ( abs(val) < 1e-8 ) ? 0. : val);
}
r.push_back(in->Rmax);
}
else
{
divr = in->divr;
int i=0,j;
while(i<dimr)
{
j = divr.find(';');
temp << divr.substr(0,j);
temp >> next_point;
r.push_back(in->Rmax * next_point);
divr = divr.substr(j+1);
i++;
temp.clear();
}
}
//rescale
double r_rescale = in->Rmax/max(abs(r.front()), abs(r.back()));
for( vector<double>::iterator it = r.begin(); it!=r.end(); ++it) *it *= r_rescale;
x = r;
dimx = dimr;
dimy = 1;
//MW130709: now also 2D
dr_up.push_back(r[1]-r[0]);
dr_down.push_back(r[1]-r[0]);
for (int i=1;i<dimr-1;i++)
{
dr_up.push_back(r[i+1]-r[i]);
dr_down.push_back(r[i]-r[i-1]);
}
dr_up.push_back(r[dimr-1]-r[dimr-2]);
dr_down.push_back(r[dimr-1]-r[dimr-2]);
// cout.precision(8);
if (in->feedback >1){
cout << "// [MW] r[] grid; setting DimR = " << dimr << endl;
for (int i=0;i<dimr;i++) cout<<"r["<<i<<"] = " << r[i] << "; ";
cout << endl;
}
}
TGrid3D::TGrid3D(Input* in) : TGrid(in) {
type = "3D";
//local bubble shape
if( (LB_ax = in->LB_ax) == -1 ) LB_ax = 0.3;
if( (LB_ay = in->LB_ay) == -1 ) LB_ay = 0.3;
if( (LB_az = in->LB_az) == -1 ) LB_az = 0.3;
//precision issues
LB_ax += 1e-8;
LB_ay += 1e-8;
LB_az += 1e-8;
LB_shape = in->LB_shape;
LB_smearing = in->LB_smearing;
in_SA_type = in->SA_type;
in_LB_MagField = in->LB_MagField;
in_SA_MagField = in->SA_MagField;
in_SA_cut_MagField = in->SA_cut_MagField;
in_LB_ISRF = in->LB_ISRF;
in_SA_ISRFStar = in->SA_ISRFStar;
in_SA_ISRFDust = in->SA_ISRFDust;
in_SA_cut_ISRF = in->SA_cut_ISRF;
dimx = in->numx;
dimy = in->numy;
string divx, divy;
stringstream temp;
double next_point;
//matze
if (in->dimx_equidistant) {
if (in->feedback >1) cout << "// [MW] x bins equidistant" << endl;
for (int i=0; i<(dimx-1); ++i)
{
double val = -in->Rmax + (double)i/(dimx-1)*(2.0*in->Rmax);
//mw: round to 1e-8, solves precision issues
if(val!=0) val = (long)((1e8*val)+(val/abs(val))*.5)/1e8;
x.push_back( ( abs(val) < 1e-8 ) ? 0. : val);
}
x.push_back(in->Rmax);
}
else
{
divx = in->divx;
int i=0,j;
while(i<dimx)
{
j = divx.find(';');
temp << divx.substr(0,j);
temp >> next_point;
x.push_back(in->Rmax * next_point);
divx = divx.substr(j+1);
i++;
temp.clear();
}
}
if (in->dimy_equidistant) {
if (in->feedback >1) cout << "// [MW] y bins equidistant" << endl;
for (int i=0; i<(dimy-1); ++i)
{
double val = -in->Rmax + (double)i/(dimy-1)*(2.0*in->Rmax);
//mw: round to 1e-8, solves precision issues
if(val!=0) val = (long)((1e8*val)+(val/abs(val))*.5)/1e8;
y.push_back( ( abs(val) < 1e-8 ) ? 0. : val);
}
y.push_back(in->Rmax);
}
else
{
divy = in->divy;
int i=0,j;
while(i<dimy)
{
j = divy.find(';');
temp << divy.substr(0,j);
temp >> next_point;
y.push_back(in->Rmax * next_point);
divy = divy.substr(j+1);
i++;
temp.clear();
}
}
//rescale, so that in->Rmax is really the maximum absolute value of both directions
double xy_rescale = in->Rmax/max( max(abs(x.front()), abs(x.back())) , max(abs(y.front()), abs(y.back())) );
for( vector<double>::iterator it = x.begin(); it!=x.end(); ++it) *it *= xy_rescale;
for( vector<double>::iterator it = y.begin(); it!=y.end(); ++it) *it *= xy_rescale;
if (in->feedback >1){
cout << "// [MW] x[] grid; setting DimX = " << dimx << endl;
for (int i=0;i<dimx;i++)
{
cout<<"x["<<i<<"] = " << x[i];
if(LB_shape == "Cuboid" && (abs(x[i]-in->xobs)<=LB_ax))cout << " /* Local Cuboid */";
cout << "; ";
}
cout << endl << "// [MW] y[] grid; setting DimY = " << dimy << endl;
for (int i=0;i<dimy;i++)
{
cout<<"y["<<i<<"] = " << y[i];
if(LB_shape == "Cuboid" && (abs(y[i]-in->yobs)<=LB_ay))cout << " /* Local Cuboid */";
cout << "; ";
}
cout << endl;
}
//MW130618: fill d..._up and d..._down vectors to speed up the evolutor
dx_up.push_back(x[1]-x[0]);
dx_down.push_back(x[1]-x[0]);
for (int i=1;i<dimx-1;i++)
{
dx_up.push_back(x[i+1]-x[i]);
dx_down.push_back(x[i]-x[i-1]);
}
dx_up.push_back(x[dimx-1]-x[dimx-2]);
dx_down.push_back(x[dimx-1]-x[dimx-2]);
dy_up.push_back(y[1]-y[0]);
dy_down.push_back(y[1]-y[0]);
for (int i=1;i<dimy-1;i++)
{
dy_up.push_back(y[i+1]-y[i]);
dy_down.push_back(y[i]-y[i-1]);
}
dy_up.push_back(y[dimy-1]-y[dimy-2]);
dy_down.push_back(y[dimy-1]-y[dimy-2]);
//write Bubble shape to file
std::ofstream bub;
bub.open("data/BUBBLE.DAT");
for(int ix=0; ix<dimx; ix++)
for(int iy=0; iy<dimy; iy++)
for(int iz=0; iz<dimz; iz++)
if(IsInLocalBubble_Indexed(ix, iy, iz)!=0) bub << x[ix] << " " << y[iy] << " " << z[iz] << " " << IsInLocalBubble_Indexed(ix, iy, iz) << " " << endl;
bub.close();
if (in->feedback >1) cout << "data/BUBBLE.DAT written, smearing is " << LB_smearing << endl;
}
double TGrid::IsInLocalBubble(double xx, double yy, double zz)
{
double xobs = 8.3; //in->xobs;
double yobs = 0.; //in->yobs;
double zobs = 0.; //in->zobs;
if(type=="3D")
{
double IsInLocal = 0;
if(LB_shape == "Cuboid")
IsInLocal = ( (fabs(xx-xobs)<=LB_ax) && (fabs(yy-yobs)<=LB_ay) && (fabs(zz-zobs)<=LB_az) );
else if(LB_shape == "Ellipsoid")
IsInLocal = ( pow((xx-xobs)/LB_ax,2) + pow((yy-yobs)/LB_ay,2) + pow((zz-zobs)/LB_az,2) <= 1 );
if (LB_smearing == "step" || LB_smearing == "Step")
{
const double lim_out = 4;
const double lim_in = 2;
const double step_out = 0.25;
const double step_in = 0.5;
IsInLocal = ( (fabs(xx-xobs)<lim_out*LB_ax) ? ( (fabs(xx-xobs)<lim_in*LB_ax) ? ( (fabs(xx-xobs) < LB_ax) ? 1 : step_in ) : step_out ) : 0 )
* ( (fabs(yy-yobs)<lim_out*LB_ay) ? ( (fabs(yy-yobs)<lim_in*LB_ay) ? ( (fabs(yy-yobs) < LB_ay) ? 1 : step_in ) : step_out ) : 0 )
* ( (fabs(zz-zobs)<lim_out*LB_az) ? ( (fabs(zz-zobs)<lim_in*LB_az) ? ( (fabs(zz-zobs) < LB_az) ? 1 : step_in ) : step_out ) : 0 );
}
else if (LB_smearing == "linear" || LB_smearing == "Linear")
{
const double lim = 4;
IsInLocal = ( (fabs(xx-xobs)<lim*LB_ax) ? ( (fabs(xx-xobs) < LB_ax) ? 1 : (fabs(xx/LB_ax) - lim)/(1-lim) ) : 0 )
* ( (fabs(yy-yobs)<lim*LB_ay) ? ( (fabs(yy-yobs) < LB_ay) ? 1 : (fabs(yy/LB_ay) - lim)/(1-lim) ) : 0 )
* ( (fabs(zz-zobs)<lim*LB_az) ? ( (fabs(zz-zobs) < LB_az) ? 1 : (fabs(zz/LB_az) - lim)/(1-lim) ) : 0 );
}
else if (LB_smearing == "gauss" || LB_smearing == "Gauss" || LB_smearing == "gaussian" || LB_smearing == "Gaussian")
{
const double lim = 3;
IsInLocal = ( (fabs(xx-xobs)<1.5*lim*LB_ax) ? ( (fabs(xx-xobs) < LB_ax) ? 1 : (exp(-pow((2./lim)*(fabs(xx-xobs)/LB_ax-1),2))) ) : 0 )
* ( (fabs(yy-yobs)<1.5*lim*LB_ay) ? ( (fabs(yy-yobs) < LB_ay) ? 1 : (exp(-pow((2./lim)*(fabs(yy-yobs)/LB_ay-1),2))) ) : 0 )
* ( (fabs(zz-zobs)<1.5*lim*LB_az) ? ( (fabs(zz-zobs) < LB_az) ? 1 : (exp(-pow((2./lim)*(fabs(zz-zobs)/LB_az-1),2))) ) : 0 );
//cout << "[MW-DEBUG-BUBBLE] LB is Gaussian and values are " << xx << " " << yy << " " << zz << " | " << IsInLocal << endl;
}
return IsInLocal;
}
else
{
cout << "[MW] WARNING: tried to call IsInLocalBubble for a Non-3D grid. There is no bubble." << endl;
return 0;
}
}
double TGrid::IsInLocalBubble_Indexed(int ix, int iy, int iz) //MW: just in case it's called from some scope where the X,Y,Z are not known.
{
if( ix<0 or ix>=x.size() or iy<0 or iy>=y.size() or iz<0 or iz>=z.size() ) return 0;
return IsInLocalBubble(x[ix], y[iy], z[iz]);
}