-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
77 lines (57 loc) · 1.95 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.python.keras.models import load_model
lemmatizer = WordNetLemmatizer()
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pk1', 'rb'))
classes = pickle.load(open('classes.pk1', 'rb'))
model = load_model('chatbot_model.model')
def clean_up_sentence(sentence):
# tokenize the sentence
sentence_words = nltk.word_tokenize(sentence)
# lemmatize the words
sentence_words = [lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
# convert a sentence into a bag of words
def bag_of_words(sentence):
sentence_words = clean_up_sentence(sentence)
bag = [0] * len(words)
for w in sentence_words:
for i, word in enumerate(words):
if word == w:
bag[i] = 1
return np.array(bag)
# predict class based on the sentence
def predict_class(sentence):
bagOfWords = bag_of_words(sentence)
res = model.predict(np.array([bagOfWords]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort the results in descending order
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({'intent': classes[r[0]], 'probability': str(r[1])})
return return_list
def get_response(intents_list, intents_json):
tag = intents_list[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
break
return result
print("Bot is live !!!")
print("Type 'goodbye' to exit out of the conversation!")
print("")
condition = ""
while condition.lower() != "goodbye":
message = input("You: ")
ints = predict_class(message)
res = get_response(ints, intents)
condition = message
print(res)