-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender_recordings.py
246 lines (188 loc) · 7.91 KB
/
render_recordings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
Created on Mar 2023
@author:
@project: EventSleep
"""
from pathlib import Path
# First import library
# Import Numpy for easy array manipulation
from tqdm import tqdm
from fastai.imports import *
import cv2
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from data_tools import LabelsNames, CropBed
from events_to_frames import aedatevents_to_npyframes, npyclipsevents_to_npyclipsframes
from data_tools import TrainOrTest
toy_data = True
if toy_data:
root_dir = './Toy_Data'
else:
root_dir = f'{Path(os.getcwd()).parent.as_posix()}/DATA'
subject = 9
config = 1
full_sequence = True
clip_num = 0
crop_bed = True
if full_sequence:
f_name_ir = f'{root_dir}/Infrared/TEST_FULL_SEQUENCE/subject{subject:02}_config{config}.mp4'
f_name_labels_ir = f'{root_dir}/Infrared/TEST_FULL_SEQUENCE/Labels.csv'
all_labels_infrared = pd.read_csv(f_name_labels_ir)
SCLabels_infrared = all_labels_infrared.query('Subject == @subject').query('Config == @config')
f_name_event_frames = f'{root_dir}/EventFrames/TEST_FULL_SEQUENCE/subject{subject:02}_config{config}.npy'
if not Path(f_name_event_frames).exists():
aedatevents_to_npyframes(subject, config, toy_data=toy_data)
f_name_labels_ev = f'{root_dir}/EventFrames/TEST_FULL_SEQUENCE/Labels.csv'
all_labels_events = pd.read_csv(f_name_labels_ev)
SCLabels_events = all_labels_events.query('Subject == @subject').query('Config == @config')
Labels_dict = LabelsNames()
event_frames = np.load(f_name_event_frames)
ir_cap = cv2.VideoCapture(f_name_ir)
ir_fps = ir_cap.get(cv2.CAP_PROP_FPS)
############################################################
# Video set up
############################################################
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
axs = axs.ravel()
fig.subplots_adjust(top=1.1, bottom=0.0)
if crop_bed:
img_ir = axs[0].imshow(np.random.rand(360, 500, 3))
img_events = axs[1].imshow(np.random.rand(360, 500), cmap='Reds')
else:
img_ir = axs[0].imshow(np.random.rand(400, 700, 3))
img_events = axs[1].imshow(np.random.rand(480, 640), cmap='Reds')
axs[0].set_title('Infrared')
axs[1].set_title('Event Frames')
axs[0].get_xaxis().set_visible(False)
axs[0].get_yaxis().set_visible(False)
axs[1].get_xaxis().set_visible(False)
axs[1].get_yaxis().set_visible(False)
writer = animation.FFMpegWriter(fps=ir_fps)
video_dir = f'./Renders/Full_Sequences'
if not os.path.exists(video_dir): os.makedirs(video_dir)
video_filename = f'{video_dir}/subject{subject:02}_config{config}.mp4'
writer.setup(fig, video_filename, dpi=200)
infrared_n_frames = SCLabels_infrared.iloc[-1]['EndFrame']
event_n_frames = SCLabels_events.iloc[-1]['EndFrame']
ratio = infrared_n_frames/event_n_frames
n_frame_ir = 0
pbar = tqdm()
# Streaming loop
for n_frame_ev in range(event_frames.shape[0]):
event_frame = event_frames[n_frame_ev, :, :, :, :]
# Get IR frame
if n_frame_ir <= int(n_frame_ev * ratio):
ir_frame_exists, ir_frame = ir_cap.read()
if ir_frame_exists:
ir_frame = cv2.cvtColor(ir_frame, cv2.COLOR_BGR2RGB)
else:
break
n_frame_ir += 1
if crop_bed: ir_frame = CropBed(ir_frame, 'Infrared', subject)
# 1 - Plot IR
img_ir.set_array(ir_frame)
# 2 - Plot event_frame
if crop_bed: event_frame = CropBed(event_frame, 'Events', subject)
# white_image = np.ones((360, 500, 3))
axs[1].clear()
axs[1].set_title('Event Frames')
axs[1].get_xaxis().set_visible(False)
axs[1].get_yaxis().set_visible(False)
m_pos = event_frame[:, :, 0, 0]
m_pos[m_pos == 0] = np.nan
m_pos = m_pos.astype('float')
axs[1].imshow(m_pos, alpha=0.5, cmap='Reds')
m_neg = event_frame[:, :, 0, 1]
m_neg[m_neg == 0] = np.nan
m_neg = m_neg.astype('float')
axs[1].imshow(m_neg, alpha=0.5, cmap='Greens')
# Plot Labels
row = SCLabels_events[(SCLabels_events['InitFrame'] <= n_frame_ev).values * (n_frame_ev < SCLabels_events['EndFrame']).values]
if len(row) != 0:
l_id = row['Label'].values[0]
l_id = int(l_id)
l_name = Labels_dict[l_id]
fig.suptitle(f'{l_id:02} || {l_name}', fontsize=20)
writer.grab_frame()
pbar.update()
# %%
writer.finish()
ir_cap.release()
else:
train_or_test = TrainOrTest(subject)
f_name_ir = glob.glob(f'{root_dir}/Infrared/{train_or_test}/subject{subject:02}_config{config}/clip{clip_num:02}*')[0]
f_name_event_frames = glob.glob(f'{root_dir}/EventFrames/{train_or_test}/subject{subject:02}_config{config}/clip{clip_num:02}*.npy')
if len(f_name_event_frames) == 0:
npyclipsevents_to_npyclipsframes(subject, config, toy_data=toy_data)
f_name_event_frames = glob.glob(f'{root_dir}/EventFrames/{train_or_test}/subject{subject:02}_config{config}/clip{clip_num:02}*.npy')[0]
l_id = int(f_name_ir[-1])
filename = f_name_ir.split('/')[-1]
Labels_dict = LabelsNames()
event_frames = np.load(f_name_event_frames)
frames = [] # List to hold all frames
frames_paths = sorted(glob.glob(f'{f_name_ir}/*'))
for frame_path in frames_paths:
frame = cv2.imread(frame_path)
frames.append(frame)
infrared_frames = np.stack(frames)
############################################################
# Video set up
############################################################
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
axs = axs.ravel()
fig.subplots_adjust(top=1.1, bottom=0.0)
if crop_bed:
img_ir = axs[0].imshow(np.random.rand(360, 500, 3))
img_events = axs[1].imshow(np.random.rand(360, 500), cmap='Reds')
else:
img_ir = axs[0].imshow(np.random.rand(400, 700, 3))
img_events = axs[1].imshow(np.random.rand(480, 640), cmap='Reds')
axs[0].set_title('Infrared')
axs[1].set_title('Event Frames')
axs[0].get_xaxis().set_visible(False)
axs[0].get_yaxis().set_visible(False)
axs[1].get_xaxis().set_visible(False)
axs[1].get_yaxis().set_visible(False)
writer = animation.FFMpegWriter(fps=6)
video_dir = f'./Renders/Clips/subject{subject:02}_config{config}'
if not os.path.exists(video_dir): os.makedirs(video_dir)
video_filename = f'{video_dir}/{filename}.mp4'
writer.setup(fig, video_filename, dpi=200)
infrared_n_frames = infrared_frames.shape[0]
event_n_frames = event_frames.shape[0]
ratio = infrared_n_frames / event_n_frames
n_frame_ir = 0
pbar = tqdm()
# Streaming loop
for n_frame_ev in range(event_frames.shape[0]):
event_frame = event_frames[n_frame_ev, :, :, :, :]
# Get IR frame
if n_frame_ir <= int(n_frame_ev * ratio):
ir_frame = infrared_frames[n_frame_ir, :]
n_frame_ir += 1
if crop_bed: ir_frame = CropBed(ir_frame, 'Infrared', subject)
# 1 - Plot IR
img_ir.set_array(ir_frame)
# 2 - Plot event_frame
if crop_bed: event_frame = CropBed(event_frame, 'Events', subject)
# white_image = np.ones((360, 500, 3))
axs[1].clear()
axs[1].set_title('Event Frames')
axs[1].get_xaxis().set_visible(False)
axs[1].get_yaxis().set_visible(False)
m_pos = event_frame[:, :, 0, 0]
m_pos[m_pos == 0] = np.nan
m_pos = m_pos.astype('float')
axs[1].imshow(m_pos, alpha=0.5, cmap='Reds')
m_neg = event_frame[:, :, 0, 1]
m_neg[m_neg == 0] = np.nan
m_neg = m_neg.astype('float')
axs[1].imshow(m_neg, alpha=0.5, cmap='Greens')
# Plot Labels
l_id = int(l_id)
l_name = Labels_dict[l_id]
fig.suptitle(f'{l_id:02} || {l_name}', fontsize=20)
writer.grab_frame()
pbar.update()
# %%
writer.finish()