-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
58 lines (39 loc) · 1.58 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import pandas as pd
import neptune
from dotenv import load_dotenv
def main(id: str):
load_dotenv()
run = neptune.init_run(
with_id=id,
project=os.environ["NEPTUNE_PROJECT"],
api_token=os.environ["NEPTUNE_API_TOKEN"],
mode="read-only",
)
agent_id = run["experiment/config/agent_id"].fetch()
env_name = run["experiment/config/env_name"].fetch()
print("Agent ID:", agent_id)
print("Environment:", env_name)
print()
df = run["train/undiscounted_return"].fetch_values(include_timestamp=False)
df.insert(0, "episodes", df.index + 1)
# Account for frame skipping
df = df.rename(columns={ "step": "frames" })
df["frames"] = df["frames"] * 4
print("Last 100 episode average score after k frames:")
print("\t10M:", get_ma_100(df, 10_000_000))
print("\t50M:", get_ma_100(df, 50_000_000))
print("\t100M:", get_ma_100(df, 100_000_000))
print("\t200M:", get_ma_100(df, 200_000_000))
df["ma_100"] = df["value"].rolling(100, min_periods=0).mean()
file = f"{agent_id}_{env_name.split('/')[-1]}".lower()
df.to_csv(f"{file}.csv", index=False)
print("Outputting training score data to CSV:", file)
df_100 = df[df["episodes"] % (len(df) // 500) == 0]
df_100.to_csv(f"{file}_100th.csv", index=False)
print("Outputting every 100th training score data to CSV:", file)
def get_ma_100(df: pd.DataFrame, frames_seen: int) -> float:
return df[df["frames"] <= frames_seen][-100:]["value"].mean()
if __name__ == "__main__":
id = input("Enter the Neptune Run ID: ")
main(id)