-
Notifications
You must be signed in to change notification settings - Fork 15
/
train.py
175 lines (126 loc) · 6.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import tensorflow as tf
import numpy as np
import os
from modules.utils import tensor_to_image, load_img, create_folder, clip_0_1
from modules.vgg19 import preprocess_input, VGG19
from modules.forward import feed_forward
def vgg_layers(layer_names):
vgg = VGG19(include_top = False, weights = 'imagenet')
vgg.trainable = False
outputs = [vgg.get_layer(name).output for name in layer_names]
model = tf.keras.Model([vgg.input], outputs)
return model
def gram_matrix(features, normalize = True):
batch_size , height, width, filters = features.shape
features = tf.reshape(features, (batch_size, height*width, filters))
tran_f = tf.transpose(features, perm=[0,2,1])
gram = tf.matmul(tran_f, features)
if normalize:
gram /= tf.cast(height*width, tf.float32)
return gram
def style_loss(style_outputs, style_target):
style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-style_target[name])**2)
for name in style_outputs.keys()])
return style_loss / len(style_outputs)
def content_loss(content_outputs, content_target):
content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-content_target[name])**2)
for name in content_outputs.keys()])
return content_loss / len(content_outputs)
def total_variation_loss(img):
x_var = img[:,:,1:,:] - img[:,:,:-1,:]
y_var = img[:,1:,:,:] - img[:,:-1,:,:]
return tf.reduce_mean(tf.square(x_var)) + tf.reduce_mean(tf.square(y_var))
class StyleContentModel(tf.keras.models.Model):
def __init__(self, style_layers, content_layers):
super(StyleContentModel, self).__init__()
self.vgg = vgg_layers(style_layers + content_layers)
self.content_layers = content_layers
self.style_layers = style_layers
self.num_content_layers = len(content_layers)
self.num_style_layers = len(style_layers)
self.vgg.trainable = False
def call(self, inputs):
preprocessed_input = preprocess_input(inputs)
outputs = self.vgg(preprocessed_input)
style_outputs, content_outputs = (outputs[:self.num_style_layers],
outputs[self.num_style_layers:])
# Compute the gram_matrix
style_outputs = [gram_matrix(style_output) for style_output in style_outputs]
# Features that extracted by VGG
style_dict = {style_name:value for style_name, value in zip(self.style_layers, style_outputs)}
content_dict = {content_name:value for content_name, value in zip(self.content_layers, content_outputs)}
return {'content':content_dict, 'style':style_dict}
def trainer(style_file, dataset_path, weights_path, content_weight, style_weight,
tv_weight, learning_rate, batch_size, epochs, debug):
# Setup the given layers
content_layers = ['block4_conv2']
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
# Build Feed-forward transformer
network = feed_forward()
# Build VGG-19 Loss network
extractor = StyleContentModel(style_layers, content_layers)
# Load style target image
style_image = load_img(style_file, resize=False)
# Initialize content target images
batch_shape = (batch_size, 256, 256, 3)
X_batch = np.zeros(batch_shape, dtype=np.float32)
# Extract style target
style_target = extractor(style_image*255.0)['style']
# Build optimizer
opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)
loss_metric = tf.keras.metrics.Mean()
sloss_metric = tf.keras.metrics.Mean()
closs_metric = tf.keras.metrics.Mean()
tloss_metric = tf.keras.metrics.Mean()
@tf.function()
def train_step(X_batch):
with tf.GradientTape() as tape:
content_target = extractor(X_batch*255.0)['content']
image = network(X_batch)
outputs = extractor(image)
s_loss = style_weight * style_loss(outputs['style'], style_target)
c_loss = content_weight * content_loss(outputs['content'], content_target)
t_loss = tv_weight * total_variation_loss(image)
loss = s_loss + c_loss + t_loss
grad = tape.gradient(loss, network.trainable_variables)
opt.apply_gradients(zip(grad, network.trainable_variables))
loss_metric(loss)
sloss_metric(s_loss)
closs_metric(c_loss)
tloss_metric(t_loss)
train_dataset = tf.data.Dataset.list_files(dataset_path + '/*.jpg')
train_dataset = train_dataset.map(load_img,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(1024)
train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
import time
start = time.time()
for e in range(epochs):
print('Epoch {}'.format(e))
iteration = 0
for img in train_dataset:
for j, img_p in enumerate(img):
X_batch[j] = img_p
iteration += 1
train_step(X_batch)
if iteration % 3000 == 0:
# Save checkpoints
network.save_weights(weights_path, save_format='tf')
print('=====================================')
print(' Weights saved! ')
print('=====================================\n')
if debug:
print('step %s: loss = %s' % (iteration, loss_metric.result()))
print('s_loss={}, c_loss={}, t_loss={}'.format(sloss_metric.result(), closs_metric.result(), tloss_metric.result()))
end = time.time()
print("Total time: {:.1f}".format(end-start))
# Training is done !
network.save_weights(weights_path, save_format='tf')
print('=====================================')
print(' All saved! ')
print('=====================================\n')