-
Notifications
You must be signed in to change notification settings - Fork 49
/
emulate.cc
462 lines (386 loc) · 13.1 KB
/
emulate.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "emulate.hh"
namespace ghidra {
/// Any time the emulator is about to execute a user-defined pcode op with the given name,
/// the indicated breakpoint is invoked first. The break table does \e not assume responsibility
/// for freeing the breakpoint object.
/// \param name is the name of the user-defined pcode op
/// \param func is the breakpoint object to associate with the pcode op
void BreakTableCallBack::registerPcodeCallback(const string &name,BreakCallBack *func)
{
func->setEmulate(emulate);
vector<string> userops;
trans->getUserOpNames(userops);
for(int4 i=0;i<userops.size();++i) {
if (userops[i] == name) {
pcodecallback[(uintb)i] = func;
return;
}
}
throw LowlevelError("Bad userop name: "+name);
}
/// Any time the emulator is about to execute (the pcode translation of) a particular machine
/// instruction at this address, the indicated breakpoint is invoked first. The break table
/// does \e not assume responsibility for freeing the breakpoint object.
/// \param addr is the address associated with the breakpoint
/// \param func is the breakpoint being registered
void BreakTableCallBack::registerAddressCallback(const Address &addr,BreakCallBack *func)
{
func->setEmulate(emulate);
addresscallback[addr] = func;
}
/// This routine invokes the setEmulate method on each breakpoint currently in the table
/// \param emu is the emulator to be associated with the breakpoints
void BreakTableCallBack::setEmulate(Emulate *emu)
{ // Make sure all callbbacks are aware of new emulator
emulate = emu;
map<Address,BreakCallBack *>::iterator iter1;
for(iter1=addresscallback.begin();iter1!=addresscallback.end();++iter1)
(*iter1).second->setEmulate(emu);
map<uintb,BreakCallBack *>::iterator iter2;
for(iter2=pcodecallback.begin();iter2!=pcodecallback.end();++iter2)
(*iter2).second->setEmulate(emu);
}
/// This routine examines the pcode-op based container for any breakpoints associated with the
/// given op. If one is found, its pcodeCallback method is invoked.
/// \param curop is pcode op being checked for breakpoints
/// \return \b true if the breakpoint exists and returns \b true, otherwise return \b false
bool BreakTableCallBack::doPcodeOpBreak(PcodeOpRaw *curop)
{
uintb val = curop->getInput(0)->offset;
map<uintb,BreakCallBack *>::const_iterator iter;
iter = pcodecallback.find(val);
if (iter == pcodecallback.end()) return false;
return (*iter).second->pcodeCallback(curop);
}
/// This routine examines the address based container for any breakpoints associated with the
/// given address. If one is found, its addressCallback method is invoked.
/// \param addr is the address being checked for breakpoints
/// \return \b true if the breakpoint exists and returns \b true, otherwise return \b false
bool BreakTableCallBack::doAddressBreak(const Address &addr)
{
map<Address,BreakCallBack *>::const_iterator iter;
iter = addresscallback.find(addr);
if (iter == addresscallback.end()) return false;
return (*iter).second->addressCallback(addr);
}
/// Provide the emitter with the containers that will hold the cached p-code ops and varnodes.
/// \param ocache is the container for cached PcodeOpRaw
/// \param vcache is the container for cached VarnodeData
/// \param in is the map of OpBehavior
/// \param uniqReserve is the starting offset for temporaries in the \e unique space
PcodeEmitCache::PcodeEmitCache(vector<PcodeOpRaw *> &ocache,vector<VarnodeData *> &vcache,
const vector<OpBehavior *> &in,uintb uniqReserve)
: opcache(ocache), varcache(vcache), inst(in)
{
uniq = uniqReserve;
}
/// Create an internal copy of the VarnodeData and cache it.
/// \param var is the incoming VarnodeData being dumped
/// \return the cloned VarnodeData
VarnodeData *PcodeEmitCache::createVarnode(const VarnodeData *var)
{
VarnodeData *res = new VarnodeData();
*res = *var;
varcache.push_back(res);
return res;
}
void PcodeEmitCache::dump(const Address &addr,OpCode opc,VarnodeData *outvar,VarnodeData *vars,int4 isize)
{
PcodeOpRaw *op = new PcodeOpRaw();
op->setSeqNum(addr,uniq);
opcache.push_back(op);
op->setBehavior( inst[opc] );
uniq += 1;
if (outvar != (VarnodeData *)0) {
VarnodeData *outvn = createVarnode(outvar);
op->setOutput(outvn);
}
for(int4 i=0;i<isize;++i) {
VarnodeData *invn = createVarnode(vars+i);
op->addInput(invn);
}
}
/// This method executes a single pcode operation, the current one (returned by getCurrentOp()).
/// The MemoryState of the emulator is queried and changed as needed to accomplish this.
void Emulate::executeCurrentOp(void)
{
if (currentBehave == (OpBehavior *)0) { // Presumably a NO-OP
fallthruOp();
return;
}
if (currentBehave->isSpecial()) {
switch(currentBehave->getOpcode()) {
case CPUI_LOAD:
executeLoad();
fallthruOp();
break;
case CPUI_STORE:
executeStore();
fallthruOp();
break;
case CPUI_BRANCH:
executeBranch();
break;
case CPUI_CBRANCH:
if (executeCbranch())
executeBranch();
else
fallthruOp();
break;
case CPUI_BRANCHIND:
executeBranchind();
break;
case CPUI_CALL:
executeCall();
break;
case CPUI_CALLIND:
executeCallind();
break;
case CPUI_CALLOTHER:
executeCallother();
break;
case CPUI_RETURN:
executeBranchind();
break;
case CPUI_MULTIEQUAL:
executeMultiequal();
fallthruOp();
break;
case CPUI_INDIRECT:
executeIndirect();
fallthruOp();
break;
case CPUI_SEGMENTOP:
executeSegmentOp();
fallthruOp();
break;
case CPUI_CPOOLREF:
executeCpoolRef();
fallthruOp();
break;
case CPUI_NEW:
executeNew();
fallthruOp();
break;
default:
throw LowlevelError("Bad special op");
}
}
else if (currentBehave->isUnary()) { // Unary operation
executeUnary();
fallthruOp();
}
else { // Binary operation
executeBinary();
fallthruOp(); // All binary ops are fallthrus
}
}
void EmulateMemory::executeUnary(void)
{
uintb in1 = memstate->getValue(currentOp->getInput(0));
uintb out = currentBehave->evaluateUnary(currentOp->getOutput()->size,
currentOp->getInput(0)->size,in1);
memstate->setValue(currentOp->getOutput(),out);
}
void EmulateMemory::executeBinary(void)
{
uintb in1 = memstate->getValue(currentOp->getInput(0));
uintb in2 = memstate->getValue(currentOp->getInput(1));
uintb out = currentBehave->evaluateBinary(currentOp->getOutput()->size,
currentOp->getInput(0)->size,in1,in2);
memstate->setValue(currentOp->getOutput(),out);
}
void EmulateMemory::executeLoad(void)
{
uintb off = memstate->getValue(currentOp->getInput(1));
AddrSpace *spc = currentOp->getInput(0)->getSpaceFromConst();
off = AddrSpace::addressToByte(off,spc->getWordSize());
uintb res = memstate->getValue(spc,off,currentOp->getOutput()->size);
memstate->setValue(currentOp->getOutput(),res);
}
void EmulateMemory::executeStore(void)
{
uintb val = memstate->getValue(currentOp->getInput(2)); // Value being stored
uintb off = memstate->getValue(currentOp->getInput(1)); // Offset to store at
AddrSpace *spc = currentOp->getInput(0)->getSpaceFromConst(); // Space to store in
off = AddrSpace::addressToByte(off,spc->getWordSize());
memstate->setValue(spc,off,currentOp->getInput(2)->size,val);
}
void EmulateMemory::executeBranch(void)
{
setExecuteAddress(currentOp->getInput(0)->getAddr());
}
bool EmulateMemory::executeCbranch(void)
{
uintb cond = memstate->getValue(currentOp->getInput(1));
return (cond != 0);
}
void EmulateMemory::executeBranchind(void)
{
uintb off = memstate->getValue(currentOp->getInput(0));
setExecuteAddress(Address(currentOp->getAddr().getSpace(),off));
}
void EmulateMemory::executeCall(void)
{
setExecuteAddress(currentOp->getInput(0)->getAddr());
}
void EmulateMemory::executeCallind(void)
{
uintb off = memstate->getValue(currentOp->getInput(0));
setExecuteAddress(Address(currentOp->getAddr().getSpace(),off));
}
void EmulateMemory::executeCallother(void)
{
throw LowlevelError("CALLOTHER emulation not currently supported");
}
void EmulateMemory::executeMultiequal(void)
{
throw LowlevelError("MULTIEQUAL appearing in unheritaged code?");
}
void EmulateMemory::executeIndirect(void)
{
throw LowlevelError("INDIRECT appearing in unheritaged code?");
}
void EmulateMemory::executeSegmentOp(void)
{
throw LowlevelError("SEGMENTOP emulation not currently supported");
}
void EmulateMemory::executeCpoolRef(void)
{
throw LowlevelError("Cannot currently emulate cpool operator");
}
void EmulateMemory::executeNew(void)
{
throw LowlevelError("Cannot currently emulate new operator");
}
/// \param t is the SLEIGH translator
/// \param s is the MemoryState the emulator should manipulate
/// \param b is the table of breakpoints the emulator should invoke
EmulatePcodeCache::EmulatePcodeCache(Translate *t,MemoryState *s,BreakTable *b)
: EmulateMemory(s)
{
trans = t;
OpBehavior::registerInstructions(inst,t);
breaktable = b;
breaktable->setEmulate(this);
}
/// Free all the VarnodeData and PcodeOpRaw objects and clear the cache
void EmulatePcodeCache::clearCache(void)
{
for(int4 i=0;i<opcache.size();++i)
delete opcache[i];
for(int4 i=0;i<varcache.size();++i)
delete varcache[i];
opcache.clear();
varcache.clear();
}
EmulatePcodeCache::~EmulatePcodeCache(void)
{
clearCache();
for(int4 i=0;i<inst.size();++i) {
OpBehavior *t_op = inst[i];
if (t_op != (OpBehavior *)0)
delete t_op;
}
}
/// This is a private routine which does the work of translating a machine instruction
/// into pcode, putting it into the cache, and setting up the iterators
/// \param addr is the address of the instruction to translate
void EmulatePcodeCache::createInstruction(const Address &addr)
{
clearCache();
PcodeEmitCache emit(opcache,varcache,inst,0);
instruction_length = trans->oneInstruction(emit,addr);
current_op = 0;
instruction_start = true;
}
/// Set-up currentOp and currentBehave
void EmulatePcodeCache::establishOp(void)
{
if (current_op < opcache.size()) {
currentOp = opcache[current_op];
currentBehave = currentOp->getBehavior();
return;
}
currentOp = (PcodeOpRaw *)0;
currentBehave = (OpBehavior *)0;
}
/// Update the iterator into the current pcode cache, and if necessary, generate
/// the pcode for the fallthru instruction and reset the iterator.
void EmulatePcodeCache::fallthruOp(void)
{
instruction_start = false;
current_op += 1;
if (current_op >= opcache.size()) {
current_address = current_address + instruction_length;
createInstruction(current_address);
}
establishOp();
}
/// Since the full instruction is cached, we can do relative branches properly
void EmulatePcodeCache::executeBranch(void)
{
const Address &destaddr( currentOp->getInput(0)->getAddr() );
if (destaddr.isConstant()) {
uintm id = destaddr.getOffset();
id = id + (uintm)current_op;
current_op = id;
if (current_op == opcache.size())
fallthruOp();
else if ((current_op < 0)||(current_op >= opcache.size()))
throw LowlevelError("Bad intra-instruction branch");
else
establishOp();
}
else
setExecuteAddress(destaddr);
}
/// Look for a breakpoint for the given user-defined op and invoke it.
/// If it doesn't exist, or doesn't replace the action, throw an exception
void EmulatePcodeCache::executeCallother(void)
{
if (!breaktable->doPcodeOpBreak(currentOp))
throw LowlevelError("Userop not hooked");
fallthruOp();
}
/// Set the current execution address and cache the pcode translation of the machine instruction
/// at that address
/// \param addr is the address where execution should continue
void EmulatePcodeCache::setExecuteAddress(const Address &addr)
{
current_address = addr; // Copy -addr- BEFORE calling createInstruction
// as it calls clear and may delete -addr-
createInstruction(current_address);
establishOp();
}
/// This routine executes an entire machine instruction at once, as a conventional debugger step
/// function would do. If execution is at the start of an instruction, the breakpoints are checked
/// and invoked as needed for the current address. If this routine is invoked while execution is
/// in the middle of a machine instruction, execution is continued until the current instruction
/// completes.
void EmulatePcodeCache::executeInstruction(void)
{
if (instruction_start) {
if (breaktable->doAddressBreak(current_address))
return;
}
do {
executeCurrentOp();
} while(!instruction_start);
}
} // End namespace ghidra