Skip to content

Latest commit

 

History

History
124 lines (82 loc) · 4.68 KB

README.md

File metadata and controls

124 lines (82 loc) · 4.68 KB

HandInteraction3D

简体中文

All Contributors

Demo

demo1

The pretrained model will be released later.

Framework

Hand Detection

Paddle Detection

Keypoint Detection

  1. InterHand
  2. DualHand

Introduce

Our repo is based on InterHand2.6M. Below is the related paper list.

Dataset

Installation

# pip switch source
# Tsinghua source
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
# Ali source
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# Tencent source
pip config set global.index-url http://mirrors.cloud.tencent.com/pypi/simple
# Douban source
pip config set global.index-url http://pypi.douban.com/simple/
python create -n hands python=3.8
conda activate hands

# Install Paddle Inference Library
# https://paddle-inference-lib.bj.bcebos.com/2.2.1/python/Windows/GPU/x86-64_vs2017_avx_mkl_cuda11.2_cudnn8/paddlepaddle_gpu-2.2.1.post112-cp38-cp38-win_amd64.whl
pip install paddlepaddle_gpu-2.2.1.post112-cp38-cp38-win_amd64.whl

# Download TesnorRT https://developer.nvidia.com/nvidia-tensorrt-8x-download
# choose TesnorRT8.0
# Installatin guide: https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-zip


# Install other packages
pip install -r requirements.txt

Train

# docker
docker pull paddlepaddle/paddle:2.2.2-gpu-cuda11.2-cudnn8

# create docker environment


# multi GPU training
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus '0,1,2,3' train.py

# single GPU training
python  train.py

Model Export

export ppyolo model.

cd path/to/PaddleDetection
python tools/export_model.py \
 --config configs/ppyolo/ppyolo_r18vd_voc.yml \
 --opt weights=output/ppyolo_r18vd_voc/best_model.pdparams \
 --output_dir path/to/HandInteraction/weights

Inference

Model Weights

Pretrained Model:None

Download the entire folder from the weight link and put it in the ${model_root_path} / weights folder.

Contributors ✨

Thanks goes to these wonderful people (emoji key):


Huan Yang

🚇 ⚠️ 💻 🐛

Geeksun2018

🚇 ⚠️ 💻 🎨 🐛

bangwhe

💻 🌍

This project follows the all-contributors specification. Contributions of any kind welcome!