forked from NOAA-GFDL/MDTF-diagnostics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mdtf_framework.py
executable file
·244 lines (217 loc) · 9.92 KB
/
mdtf_framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python3
# This is the top-level python script for the MDTF-diagnostics package.
# See http://gfdl.noaa.gov/mdtf-diagnostics.
# NOTE: Under the standard installation procedure, users should never call this
# script directly, but should instead call the "mdtf" wrapper shell script
# created during installation.
import sys
# do version check before anything else
if sys.version_info.major != 3 or sys.version_info.minor < 10:
sys.exit("ERROR: The MDTF package requires python >= 3.10. Please check "
"which version of python is on your $PATH (e.g. with `which python`.)\n"
f"Attempted to run with following python version:\n{sys.version}")
# passed; continue with imports
import os
import copy
import click
from src import util, cli, data_sources, pod_setup, preprocessor, translation, environment_manager, output_manager
import dataclasses
import logging
import datetime
import collections
_log = logging.getLogger(__name__)
ConfigTuple = collections.namedtuple(
'ConfigTuple', 'name backup_filename contents'
)
ConfigTuple.__doc__ = """
Class wrapping general structs used for configuration.
"""
class MainLogger(util.MDTFObjectLoggerMixin, util.MDTFObjectLogger):
"""Class to hold logging information for main driver script"""
log: dataclasses.InitVar = _log
name: str
def __init__(self, log_dir: str):
if not os.path.exists:
os.mkdir(log_dir)
self.name = "MDTF_main.{:%Y-%m-%d:%H.%M.%S}".format(datetime.datetime.now())
# Access MDTFObjectLogger attributes
super().__init__(name=self.name)
self.init_log(log_dir=log_dir)
def print_summary(pods, _log: logging.log):
def summary_info_tuple(pod):
"""create tuple of ([failed cases], [not failed cases], POD_OUTPUT_DIR) for input pod
"""
return (
[p_name for p_name, p in pod.multicase_dict.items() if pod.failed],
[p_name for p_name, p in pod.multicase_dict.items() if not pod.failed],
getattr(pod.paths, 'POD_OUTPUT_DIR', '<ERROR: dir not created.>')
)
d = {p_name: summary_info_tuple(p) for p_name, p in pods.items()}
failed = any(len(tup[0]) > 0 for tup in d.values())
_log.info('\n' + (80 * '-'))
if failed:
_log.info(f"Exiting with errors.")
for case_name, tup in d.items():
_log.info(f"Summary for {case_name}:")
if tup[0] == 'dummy sentinel string':
_log.info('\tAn error occurred in setup. No PODs were run.')
else:
if tup[1]:
_log.info((f"\tThe following PODs exited normally: "
f"{', '.join(tup[1])}"))
if tup[0]:
_log.info((f"\tThe following PODs raised errors: "
f"{', '.join(tup[0])}"))
_log.info(f"\tOutput written to {tup[2]}")
else:
_log.info(f"Exiting normally.")
for pod_name, tup in d.items():
_log.info(f"Summary for {pod_name}:")
_log.info(f"\tAll PODs exited normally.")
_log.info(f"\tOutput written to {tup[2]}")
for pod_name, pod_atts in pods.items():
pod_atts.status = util.ObjectStatus.SUCCEEDED
@click.option('-f',
'--configfile',
required=True,
type=click.Path(),
help='Path to the runtime configuration file'
)
@click.option("-v",
"--verbose",
is_flag=True,
default=False,
help="Enables verbose mode.")
@click.command()
@click.pass_context
def main(ctx, configfile: str, verbose: bool = False) -> int:
"""A community-developed package to run Process Oriented Diagnostics on weather and climate data
"""
def backup_config(config):
"""Copy serializable version of parsed settings, in order to write
backup config file.
"""
d = copy.deepcopy(config)
d = {k: v for k, v in d.items() if not k.endswith('_is_default_')}
d['case_list'] = copy.deepcopy(config.case_list)
return ConfigTuple(
name='backup_config',
backup_filename='config_save.json',
contents=d
)
# Cache log info in memory until log file is set up
util.logs.initial_log_config()
assert os.path.isfile(configfile), f'Configuration file {configfile} not found. Check the file path for typos.'
# print(f"=== Starting {os.path.realpath(__file__)}\n")
# NameSpace allows dictionary keys to be referenced with dot notation
ctx.config = util.NameSpace()
# parse the runtime config file
ctx.config = cli.parse_config_file(configfile)
ctx.config = cli.verify_conda_envs(ctx.config, configfile)
# Test ctx.config
# print(ctx.config.WORK_DIR)
ctx.config.CODE_ROOT = os.path.dirname(os.path.realpath(__file__))
ctx.config.TEMP_DIR_ROOT = ctx.config.WORK_DIR
log_config = cli.read_config_file(
ctx.config.CODE_ROOT, "src", "logging.jsonc"
)
cli.verify_runtime_config_options(ctx.config)
# Initialize the model path object and define the model data output paths
make_new_work_dir = not ctx.config.overwrite
model_paths = util.ModelDataPathManager(ctx.config,
new_work_dir=make_new_work_dir)
model_paths.setup_data_paths(ctx.config.case_list)
ctx.config.update({'WORK_DIR': model_paths.WORK_DIR})
ctx.config.update({'OUTPUT_DIR': model_paths.OUTPUT_DIR})
cat_path = ctx.config.DATA_CATALOG
ctx.config.update({'DATA_CATALOG': util.filesystem.resolve_path(cat_path)})
backup_config = backup_config(ctx.config)
ctx.config._configs = dict()
ctx.config._configs[backup_config.name] = backup_config
ctx.config._configs['log_config'] = ConfigTuple(
name='log_config',
backup_filename=None,
contents=log_config
)
# Set up main logger
log = MainLogger(log_dir=model_paths.WORK_DIR)
if verbose:
log.log.debug("Initialized cli context")
# configure a variable translator object with information from Fieldlist tables
var_translator = translation.VariableTranslator(ctx.config.CODE_ROOT)
var_translator.read_conventions(ctx.config.CODE_ROOT)
# initialize the preprocessor (dummy pp object if run_pp=False)
data_pp = preprocessor.init_preprocessor(model_paths,
ctx.config,
ctx.config.run_pp
)
# set up the case data source dictionary
cases = dict()
for case_name, case_dict in ctx.config.case_list.items():
# instantiate the data_source class instance for the specified convention
cases[case_name] = data_sources.data_source[case_dict.convention.upper() + "DataSource"](case_name,
case_dict,
model_paths,
parent=None)
cases[case_name].set_date_range(case_dict.startdate, case_dict.enddate)
pods = dict.fromkeys(ctx.config.pod_list, [])
pod_runtime_reqs = dict()
# configure pod object(s)
append_vars = False
for count, pod_name in enumerate(ctx.config.pod_list):
if count > 0:
append_vars = True
pods[pod_name] = pod_setup.PodObject(pod_name, ctx.config)
pods[pod_name].setup_pod(ctx.config, model_paths, cases, append_vars)
pods[pod_name].log.info(f"Preprocessing data for {pod_name}")
for k, v in pods[pod_name].runtime_requirements.items():
if not hasattr(pod_runtime_reqs, k):
pod_runtime_reqs[k] = v
# run module(s)
if "module_list" in ctx.config:
for module in ctx.config.module_list:
module_obj = __import__(module)
for function in ctx.config.module_list[module]:
args = ctx.config.module_list[module][function].args
func = getattr(module_obj, function)
func(args)
# read the subset of data for the cases and date range(s) and preprocess the data
cat_subset = data_pp.process(cases, ctx.config, model_paths.MODEL_WORK_DIR)
# write the preprocessed files
data_pp.write_ds(cases, cat_subset, pod_runtime_reqs)
# rename vars in cat_subset to align with POD convention
cat_subset = data_pp.rename_dataset_vars(cat_subset, cases)
# write the ESM intake catalog for the preprocessed files
data_pp.write_pp_catalog(cases, cat_subset, model_paths, log.log)
# configure the runtime environments and run the POD(s)
if not any(p.failed for p in pods.values()):
log.log.info("### %s: running pods '%s'.", [p for p in pods.keys()])
run_mgr = environment_manager.SubprocessRuntimeManager(pods, ctx.config, log)
run_mgr.setup()
run_mgr.run(cases, log)
else:
for p in pods.values:
if any(p.failed):
log.log.info("Data request for pod '%s' failed; skipping execution.", p)
# convert POD figure files if necessary
# generate html output
for p in pods.values():
out_mgr = output_manager.HTMLOutputManager(p, ctx.config)
out_mgr.make_output(p, ctx.config)
# clean up temporary directories
tempdirs = util.TempDirManager(ctx.config)
tempdirs.cleanup()
print_summary(pods, log.log)
# close the varlistEntry log handlers
for case_name, case_dict in cases.items():
for var in case_dict.iter_children():
var._log_handler.close()
# close the main log file
log._log_handler.close()
if not any(v.failed for v in pods.values()):
return util.exit_handler(code=0)
else:
return util.exit_handler(code=1)
if __name__ == '__main__':
exit_code = main(prog_name='MDTF-diagnostics')
sys.exit(exit_code)