Skip to content
/ seg-mia Public

Membership inference attacks on (poisoned) segmentation models; TUM master's thesis

Notifications You must be signed in to change notification settings

ctom2/seg-mia

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial attacks on segmentation models

Implementation of membership inference attacks 🗡 on (poisoned 🧪) binary and multi-class segmentation models. Running the experiments requires Citycapes dataset [1], Medical Segmentation Decathlon dataset (its subset of liver images) [2] and Kvasir-SEG dataset [3]. The implementation assumes attacks on a victim model with the use of a single shadow model.

🎓 The code was developed for my master's thesis in data engineering and analytics at Technische Universität München (TUM).

Prerequisites

  • Python 3.7 or higher
  • PyTorch 1.12.1 or higher
  • Torchvision 0.13 or higher
  • Opacus 1.2 or higher
  • SimpleITK 2.1 or higher
  • segmentation_models_pytorch 0.3.0 or higher

Data

Cityscapes data need to be organised as follows:

seg-mia
└───mia-cityscapes
│   └───cityscapes
│   │   └───leftImg8bit
│   │   │   └───train
│   │   └───gtFine
│   │   │   └───train
...

Medical Segmentation Decathlon data need to be organised as follows:

seg-mia
└───mia-liver(-backdoor)
│   └───liver
│   │   └───imgs
│   │   └───lbls
...

Kvasir-SEG data need to be organised as follows:

seg-mia
└───mia-kvasir
│   └───Kvasir-SEG
│   │   └───images
│   │   └───masks
...

Evaluation

Each attack can be evaluated by running python main.py and controlled with the following command-line options.

General settings:

  • Arguments --victim and --shadow define the encoder architectures for victim and shadow U-Net segmentation models, respectively (see segmentation_models_pytorch)
  • --defensetype sets the defense methods applied to a victim model
  • --trainsize defines the size of the training dataset for the victim and shadow models

Settings for MIAs on poisoned models:

  • --attacktype defines the attack type
  • --triggertype controls the trigger shape (either 'line' or 'square')
  • --triggersize sets the height for a line trigger or the edge size of a square trigger (in pixels)
  • --triggerval sets the trigger values
  • --poison defines the poisoning probability for each training data sample; in the range [0,1]

Attack types:

Attack type Description
1 Type-I
2 Type-II
3 Global loss-based

Defense types:

Defense type Description Implementation
1 No defense mia-liver, mia-kvasir, mia-cityscapes, mia-liver-backdoor
2 Argmax mia-liver, mia-kvasir, mia-cityscapes
3 Crop training mia-liver, mia-kvasir, mia-cityscapes
4 Mix-up mia-liver, mia-kvasir, mia-cityscapes
5 Min-max mia-liver, mia-kvasir
6 DP mia-liver
7 Knowledge distiallation mia-liver

References

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. “The cityscapes dataset for semantic urban scene understanding.” In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 3213–3223.

[2] A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. Van Ginneken, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze, et al. “A large annotated medical image dataset for the development and evaluation of segmentation algorithms.” In: arXiv preprint arXiv:1902.09063 (2019).

[3] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt, M. Riegler, and P. Halvorsen. “KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection.” In: Proceedings of the 8th ACM on Multimedia Systems Conference. MMSys’17. Taipei, Taiwan: ACM, 2017, pp. 164–169. isbn: 978-1-4503-5002-0. doi: 10.1145/3083187. 3083212.

About

Membership inference attacks on (poisoned) segmentation models; TUM master's thesis

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages