-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmethods.py
406 lines (320 loc) · 11.7 KB
/
methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import functools
import statistics
import numpy_financial as npf
from dateutil import parser
from scipy import optimize, stats
def _generate_dates_from_rows(rows):
try:
dates = []
for row in rows:
element = row[-1]
dates.append(parser.parse(element).date())
return dates
# Not a valid date string
except ValueError:
return None
def tm1_io(func):
""" Higher Order Function to read values from source and write result to target view
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
# read values from view
if "tm1_services" in kwargs and "tm1_source" in kwargs and "cube_source" in kwargs and "view_source" in kwargs:
tm1 = kwargs["tm1_services"][kwargs["tm1_source"]]
if "values" not in kwargs:
rows_and_values = tm1.cubes.cells.execute_view_rows_and_values(
cube_name=kwargs["cube_source"],
view_name=kwargs["view_source"],
private=False,
element_unique_names=False)
kwargs["values"] = [values_by_row[0] for values_by_row in rows_and_values.values()]
kwargs["dates"] = _generate_dates_from_rows(rows_and_values.keys())
result = func(*args, **kwargs)
# write result to source view
if "tm1_services" in kwargs and "tm1_target" in kwargs and "cube_target" in kwargs and "view_target" in kwargs:
tm1 = kwargs["tm1_services"][kwargs["tm1_target"]]
mdx = tm1.cubes.views.get(
cube_name=kwargs["cube_target"],
view_name=kwargs["view_target"],
private=False).MDX
tm1.cubes.cells.write_values_through_cellset(
mdx=mdx,
values=(result,))
return result
return wrapper
def tm1_tidy(func):
""" Higher Order Function to delete source view and target view (if param tidy is set to true)
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
finally:
if "tm1_services" in kwargs and kwargs.get("tidy", False) in ('True', 'true', 'TRUE', '1', 1):
# delete source view
if "tm1_source" in kwargs and "cube_source" in kwargs and "view_source" in kwargs:
tm1 = kwargs["tm1_services"][kwargs["tm1_source"]]
tm1.cubes.views.delete(
cube_name=kwargs["cube_source"],
view_name=kwargs["view_source"],
private=False)
# delete target view
if kwargs and "tm1_target" in kwargs and "cube_target" in kwargs and "view_target" in kwargs:
tm1 = kwargs["tm1_services"][kwargs["tm1_target"]]
tm1.cubes.views.delete(
cube_name=kwargs["cube_target"],
view_name=kwargs["view_target"],
private=False)
return wrapper
def _nroot(value, n):
"""
Returns the nth root of the given value.
"""
return value ** (1.0 / n)
@tm1_tidy
@tm1_io
def irr(values, *args, **kwargs):
return npf.irr(values=values)
@tm1_tidy
@tm1_io
def npv(rate, values, *args, **kwargs):
return npf.npv(rate=float(rate), values=list(values))
@tm1_tidy
@tm1_io
def stdev(values, *args, **kwargs):
return npf.std(values)
@tm1_tidy
@tm1_io
def stdev_p(values, *args, **kwargs):
return npf.std(values, ddof=1)
@tm1_tidy
@tm1_io
def fv(rate, nper, pmt, pv, when=0, *args, **kwargs):
""" Calculates the future value
:param rate: Rate of interest as decimal (not per cent) per period
:param nper: Number of compounding periods
:param pmt: Payment
:param pv: Present Value
:param when: 0 or 1. When the payment is made (Default: the payment is made at the end of the period)
:param args:
:param kwargs:
:return:
"""
return npf.fv(rate=float(rate), nper=float(nper), pmt=float(pmt), pv=float(pv), when=int(when))
@tm1_tidy
@tm1_io
def fv_schedule(principal, values, *args, **kwargs):
""" The future value with the variable interest rate
:param principal: Principal is the present value of a particular investment
:param values: A series of interest rate
:return:
"""
return functools.reduce(lambda x, y: x + (x * y), values, float(principal))
@tm1_tidy
@tm1_io
def pv(rate, nper, pmt, fv, when=0, *args, **kwargs):
""" Calculate the Present Value
:param rate: It is the interest rate/period
:param nper: Number of periods
:param pmt: Payment/period
:param fv: Future Value
:param when: 0 or 1. When the payment is made (Default: the payment is made at the end of the period)
:return:
"""
return npf.pv(rate=float(rate), nper=float(nper), pmt=float(pmt), fv=float(fv), when=int(when))
@tm1_tidy
@tm1_io
def xnpv(rate, values, dates, *args, **kwargs):
""" Calculates the Net Present Value for a schedule of cash flows that is not necessarily periodic
:param rate: Discount rate for a period
:param values: Positive or negative cash flows
:param dates: Specific dates
:return:
"""
rate = float(rate)
if len(values) != len(dates):
raise ValueError('values and dates must be the same length')
if sorted(dates) != dates:
raise ValueError('dates must be in chronological order')
first_date = dates[0]
return sum([value / ((1 + rate) ** ((date - first_date).days / 365.0)) for (value, date) in zip(values, dates)])
@tm1_tidy
@tm1_io
def pmt(rate, nper, pv, fv=0, when=0, *args, **kwargs):
""" PMT denotes the periodical payment required to pay off for a particular period of time with a constant interest rate
:param rate: Interest rate/period
:param nper: Number of periods
:param pv: Present Value
:param fv: Future Value, if not assigned 0 is assumed
:param when: 0 or 1. When the payment is made (Default: the payment is made at the end of the period)
:return:
"""
return npf.pmt(rate=float(rate), nper=float(nper), pv=float(pv), fv=float(fv), when=int(when))
@tm1_tidy
@tm1_io
def ppmt(rate, per, nper, pv, fv=0, when=0, *args, **kwargs):
""" calculates payment on principal with a constant interest rate and constant periodic payments
:param rate: Interest rate/period
:param per: The period for which the principal is to be calculated
:param nper: Number of periods
:param pv: Present Value
:param fv: Future Value, if not assigned 0 is assumed
:param when: 0 or 1. When the payment is made (Default: the payment is made at the end of the period)
:return:
"""
return npf.ppmt(rate=float(rate), per=float(per), nper=float(nper), pv=float(pv), fv=float(fv), when=int(when))
@tm1_tidy
@tm1_io
def mirr(values, finance_rate, reinvest_rate, *args, **kwargs):
""" MIRR is calculated by assuming NPV as zero
:param values: Positive or negative cash flows
:param finance_rate: Interest rate paid for the money used in cash flows
:param reinvest_rate: Interest rate paid for reinvestment of cash flows
:return:
"""
return npf.mirr(values=values, finance_rate=float(finance_rate), reinvest_rate=float(reinvest_rate))
@tm1_tidy
@tm1_io
def xirr(values, dates, guess=0.1, *args, **kwargs):
""" Returns the internal rate of return for a schedule of cash flows that is not necessarily periodic.
:param values: Positive or negative cash flows
:param dates: Specific dates
:param guess: An assumption of what you think IRR should be
:return:
"""
return optimize.newton(lambda r: xnpv(r, values, dates), float(guess))
@tm1_tidy
@tm1_io
def nper(rate, pmt, pv, fv=0, when=0, *args, **kwargs):
""" Number of periods one requires to pay off the loan
:param rate: Interest rate/period
:param pmt: Amount paid per period
:param pv: Present Value
:param fv: Future Value, if not assigned 0 is assumed
:param when: 0 or 1. When the payment is made (Default: the payment is made at the end of the period)
:return:
"""
return npf.nper(rate=float(rate), pmt=float(pmt), pv=float(pv), fv=float(fv), when=int(when)).item(0)
@tm1_tidy
@tm1_io
def rate(nper, pmt, pv, fv=0, when=0, guess=0.1, maxiter=100, *args, **kwargs):
""" The interest rate needed to pay off the loan in full for a given period of time
:param nper: Number of periods
:param pmt: Amount paid per period
:param pv: Present Value
:param fv: Future Value, if not assigned 0 is assumed
:param when: 0 or 1. When the payment is made (Default: the payment is made at the end of the period)
:param guess: An assumption of what you think the rate should be
:param maxiter: maximum number of iterations
:return:
"""
return npf.rate(
nper=float(nper),
pmt=float(pmt),
pv=float(pv),
fv=float(fv),
when=int(when),
guess=float(guess),
maxiter=int(maxiter))
@tm1_tidy
@tm1_io
def effect(nominal_rate, npery, *args, **kwargs):
""" Returns the effective annual interest rate, given the nominal annual interest rate
and the number of compounding periods per year.
:param nominal_rate: Nominal Interest Rate
:param npery: Number of compounding per year
:return:
"""
nominal_rate, npery = float(nominal_rate), float(npery)
return ((1 + (nominal_rate / npery)) ** npery) - 1
@tm1_tidy
@tm1_io
def nominal(effect_rate, npery, *args, **kwargs):
""" Returns the nominal annual interest rate, given the effective rate and the number of compounding periods per year.
:param effect_rate: Effective annual interest rate
:param npery: Number of compounding per year
:return:
"""
effect_rate, npery = float(effect_rate), float(npery)
return (_nroot(effect_rate + 1, npery) - 1) * npery
@tm1_tidy
@tm1_io
def sln(cost, salvage, life, *args, **kwargs):
""" Returns the straight-line depreciation of an asset for one period.
:param cost: Cost of asset when bought (initial amount)
:param salvage: Value of asset after depreciation
:param life: Number of periods over which the asset is being depreciated
:return:
"""
return (float(cost) - float(salvage)) / float(life)
@tm1_tidy
@tm1_io
def mean(values, *args, **kwargs):
return statistics.mean(values)
@tm1_tidy
@tm1_io
def sem(values, *args, **kwargs):
"""
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html
:return:
"""
return stats.sem(values)
@tm1_tidy
@tm1_io
def median(values, *args, **kwargs):
return statistics.median(values)
@tm1_tidy
@tm1_io
def mode(values, *args, **kwargs):
"""
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html
:param values:
:return:
"""
return stats.mode(values)[0][0]
@tm1_tidy
@tm1_io
def var(values, *args, **kwargs):
return npf.var(values)
@tm1_tidy
@tm1_io
def var_p(values, *args, **kwargs):
return npf.var(values, ddof=1)
@tm1_tidy
@tm1_io
def kurt(values, *args, **kwargs):
"""
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html
:param values:
:return:
"""
return stats.kurtosis(values)
@tm1_tidy
@tm1_io
def skew(values, *args, **kwargs):
"""
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
:param values:
:return:
"""
return stats.skew(values)
@tm1_tidy
@tm1_io
def rng(values, *args, **kwargs):
return max(values) - min(values)
@tm1_tidy
@tm1_io
def min_(values, *args, **kwargs):
return min(values)
@tm1_tidy
@tm1_io
def max_(values, *args, **kwargs):
return max(values)
@tm1_tidy
@tm1_io
def sum_(values, *args, **kwargs):
return sum(values)
@tm1_tidy
@tm1_io
def count(values, *args, **kwargs):
return len(set(values))